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Abstract 

Lightning has an impact on Air Force operations in the air and on the ground.  Delays to 

flight or maintenance activities are some of the common consequences that result from 

thunderstorms approaching an active airfield.  These delays can degrade a unit’s mission 

effectiveness, but their impact is nothing compared to the potential fallout when valuable 

equipment, or much worse when personnel, are struck by lightning.  As such, determining how 

far naturally occurring lightning normally travels from thunderstorms can provide insight to 

decision makers concerning in-flight and ground safety measures. 

3D lightning data from the Kennedy Space Center was merged with archived weather 

radar data from Melbourne, Florida.  To analyze the radar characteristics of lightning, the radar 

data was interpolated to a 3D grid of reflectivity to permit direct extraction of reflectivity values.  

More than 19,000 lightning flashes were analyzed to resolve the composite reflectivity of the 

flash origin and to determine the horizontal distance of the flash origin from the nearest radar 

reflectivity core—defined as a radar reflectivity factor (dBZ) of greater than 40 dBZ.  More than 

8,500 flashes were used for similar base reflectivity computations. 

95% of the flash origins either had a composite reflectivity of greater than 40 dBZ or 

were within 3 km of the nearest 40-dBZ radar echo.  95% of the flash origins had a base 

reflectivity of greater than 40 dBZ or were within 6 km of the nearest 40-dBZ echo.  In addition, 

99% of the flashes traveled less than 30 km from the flash origin, and less than 21 km from the 

nearest 40-dBZ echo.  Based upon these results, it should be feasible to suggest lightning 

avoidance criteria based upon the radar reflectivity displayed by ground or airborne radars.
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I. Introduction 

1.1. Motivation 

Lightning is a common natural phenomenon that can adversely affect Air Force 

ground and aerospace operations.  The impact that lightning has on mission effectiveness 

can range from mild to the extreme.  A lightning-producing thunderstorm approaching a 

base, prompting the Base Weather Station (BWS) to issue a weather warning, will cause 

all maintenance activities on the flight line to be halted immediately as personnel take 

shelter (Department of the Air Force 1997).  A delay in the maintenance schedule may be 

a mere annoyance; it could, however, have a very significant impact on overall mission 

capability.  Even a severe delay in maintenance and flight operations that degrades a 

unit’s effectiveness is insignificant when compared to the potential lethality—to both 

personnel and valuable equipment—of actually being struck by lightning. 

An aircraft struck by lightning may incur anything from minimal damage to the 

skin of the aircraft to catastrophic system failure.  Given the nature of modern military 

aircraft design, especially those airframes with stealth characteristics where the skin is 

made up of composite materials, even seemingly modest damage to the aircraft’s outer 

surface can be extremely expensive to repair.  Aircraft parked on the flight line and the 
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personnel that maintain them, are in jeopardy of being struck by cloud-to-ground 

lightning.  Once airborne, however, the threat of lightning strikes also includes the much 

more prevalent cloud discharges that never reach the ground.  The desire for rather liberal 

lightning avoidance flight restrictions to allow for more flight hours—especially in the 

summer months when afternoon thunderstorms are present across much of the southern 

United States—must be weighed against the concerns for the safety of the crewmembers, 

passengers, and valuable cargo. 

A key element in coming up with recommendations for aircraft in-flight lightning 

avoidance is determining the distance that naturally occurring lightning travels from 

thunderstorm radar echoes.  Most modern military aircraft have onboard radars that are 

capable of interrogating thunderstorms.  A study of the radar characteristics of lightning 

source regions, when coupled with information about the extent that naturally occurring 

travels, could, potentially, provide the basis for improved guidance on lightning 

avoidance.  The same holds true for verification criterion for issuing and canceling 

lightning warnings at Air Force installations; the distance that cloud-to-ground lightning 

normally travels from its source to the ground strike location is of particular interest in 

examining this radius.  If the distance that cloud-to-ground lightning travels can then be 

correlated with a radar echo signature of the source, better guidance for BWS personnel 

may be possible. 

1.2. Problem and Importance 

Personnel struck by lightning can be severely injured, or even killed; no asset in 

the Air Force inventory is more precious than the people that make up the force.  In a 

tragic event that took place at Hurlburt Field, Florida on 29 April 1996, a young airman 
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lost his life after being struck by lightning while maintaining an AC-130H aircraft 

(Bauman 1998).  At 0804 CDT the BWS issued an advisory for observed lightning within 

3 NM.  The advisory remained in effect for the next hour and twenty minutes with no 

further lightning observed within 3 NM of the airfield during that time.  At 0930 CDT the 

advisory was cancelled, with an indication that it may need to be reissued within the next 

30 minutes.  Immediately after the advisory was cancelled, a maintenance crew was 

dispatched to resume a training class on AC-130H tire replacement procedures.  At 0938 

CDT, while one of the airman was in the wheel well of the AC-130H, a bolt of lightning 

struck the aircraft.  Ten personnel were injured, and the airman that was in the wheel well 

was killed.  Air traffic controllers estimated that the thunderstorm that caused the 

lightning was about 5 – 7 NM south of the airfield. 

As a result of the events of 29 April 1996, weather warnings for lightning at all 

Air Force installations are to be issued when lightning is observed within 5 NM 

(Department of the Air Force 1998).  According to this Air Force Manual (AFM), the 

warning is to stay in effect until the, “thunderstorms have passed beyond the area covered 

by the warning.”  Perhaps nothing could have prevented the tragedy that occurred that 

day; the investigation found that all parties involved—the BWS, maintenance, and 

medical personnel—had done everything right based upon the information available to 

them (Bauman 1998).  But, is it possible that even the 5-NM criterion—which is declared 

in AFM 15-125 (1998) to be the minimum distance to be used to trigger a lightning 

warning to be issued or cancelled—is not adequate?  Also, when trying to determine 

when the thunderstorm has moved out of the area to warrant canceling a warning, what 

should the BWS personnel use to determine how far away the thunderstorm is?  Can a 
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rule-of-thumb that uses radar information be ascertained that will take some of the 

uncertainty out of this process?  But, cloud-to-ground lightning is not the only concern. 

The System Program Office (SPO) for the C-17 Globemaster III requested 

information about how far lightning travels from thunderstorms so better guidance on 

lightning avoidance could be given to aircrews.  It is estimated that an Air Force C-17 is 

struck by lightning approximately once every 4,400 hours of operation (C-17 TIM Brief 

2001).  Information about lightning avoidance is, however, of general interest to the 

entire U.S. Air Force flying community.  Answering the questions posed in the previous 

paragraph is the goal of this work along with two other studies being accomplished this 

year at AFIT—the other theses are by Captain Todd McNamara and Captain David 

Vollmer.  When the results of this work and the other two projects are combined, it 

should provide better guidance to decision makers about both the cloud-to-ground 

lightning safety issue and in-flight lightning avoidance criteria for military aviation 

assets. 

1.3. Purpose and Scope of Work 

The purpose of this research is to examine the radar reflectivity signatures of 

lightning flashes to determine if it is possible to establish guidance for aircraft lightning 

avoidance and improved criteria for issuing/canceling lightning warnings based upon 

these radar signatures.  For this study, the thresholds of radar reflectivity factor displayed 

by the C-17’s radar system are used to define a critical reflectivity value (40 dBZ) for 

identification of thunderstorm reflectivity cores.  This allows an analysis of the radar 

reflectivity characteristics of lightning flash origins based upon ground-based weather 

radar observations to be applicable to what an aircrew member would see on their radar 
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display.  The fusion of these lightning base reflectivity signatures with determinations of 

the distances lightning travels from the origin points, may aid in developing a rule-of-

thumb for aircraft lightning avoidance.  In addition, the lightning flash origin composite 

radar reflectivity signature, when coupled with Captain McNamara’s results about 

distances of cloud-to-ground lightning, can provide valuable information about lightning 

warning criteria. 

Three-dimensional lightning data from the Lightning Detection and Ranging 

(LDAR) system at the Kennedy Space Center (KSC), in conjunction with the weather 

radar coverage of the KSC area provided by the National Weather Service’s (NWS) 

Weather Surveillance Radar – 1988 Doppler (WSR-88D) at Melbourne, Florida, makes 

an examination of lightning phenomenon in the KSC area a natural choice for this task.  

Raw LDAR data sets are archived and available for download from the Global 

Hydrology Resource Center, and WSR-88D data are available in archived format on 

8mm data tape from the National Climatic Data Center (NCDC).  The nature of working 

with archived radar data makes it unfeasible to conduct a broad survey that mergers all 

available LDAR and radar data.  As such, case studies are selected that provide data for 

two differing weather regimes that impact the KSC area.  The geographic restriction 

imposed by the fact that the only 3D lightning data readily available are from the KSC, is 

a major limiting factor on the scope of this research. 

Another limiting factor is that only naturally occurring lightning is being 

considered.  In an article that appeared on the web-based magazine, Aerospace 

Engineering Online, Lalande et al. (1995) assert that about 90% of all aircraft lightning 

strikes are cases of triggered lightning, rather than naturally occurring lightning that is 
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intercepted by the aircraft.  This triggered lightning occurs when an aircraft flies into a 

region of a thunderstorm where a very intense electrostatic field—in the range of 50 – 

100 kV/m—is present.  The fact that the intent of this study is to provide better guidance 

on thunderstorm avoidance mitigates the impact of this constraint.  

1.4. Summary of Results 

More than 19,000 lightning flashes were merged with weather radar data to 

determine the typical composite radar characteristics of lightning flash origin points.  The 

radar reflectivity factor (dBZ) used to identify the reflectivity cores of thunderstorms is 

40 dBZ.  95% of all the flash origins were either within a 40-dBZ echo, or were less than 

3 km from the edge of the nearest 40-dBZ echo.  For base reflectivity analysis, it was 

found that 95% of the more than 8,500 flash origins considered were less than 6 km from 

the nearest 40-dBZ reflectivity core.  In order to provide guidance on lightning avoidance 

based upon radar echoes for weather or aircrew personnel, information about the extent 

of lightning from the flash origin points, and from the radar reflectivity cores, was also 

examined. 

The maximum horizontal distance for each flash, measured from the flash origin 

point to each subsequent point in the lightning flash, of the 19,000+ lightning flashes in 

the composite reflectivity dataset was calculated.  99% of the flashes traveled less than 30 

km from their origin, and 95% extended less than 19 km from the flash origin.  In 

addition to these horizontal distance determinations, the maximum flash distance from a 

40-dBZ echo, which represents the actual distance measured from each point in a flash to 

the nearest 40-dBZ echo in three dimensions, for the 8,515 flashes in the base reflectivity 
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dataset was also computed.  99% of these flashes traveled no more than 21 km from the 

nearest 40-dBZ echo. 

Combining the flash origin radar characteristics with information about the 

overall extent of the lightning from the origin provides the data necessary to suggest 

potential lightning avoidance and lightning warning criteria based upon radar echoes. For 

example, it may be possible to suggest that weather warnings for lightning within five 

nautical miles of an Air Force installation could be issued when the 40-dBZ composite 

reflectivity echo of a lightning-producing thunderstorm comes within 7 NM of the 

advisory area.  This could add to the overall safety of base personnel by not waiting to 

issue an advisory until lightning is actually observed within 5 NM. 

The data also suggests that a possible lightning avoidance rule for aircraft would 

be to stay at least 36 km (or about 20 NM) away from the 40-dBZ radar reflectivity cores 

in thunderstorms.  Also, much less restrictive avoidance criteria might be suggested by 

basing the rule on the finding that 99% of lightning flashes traveled no more than 21 km 

from the nearest reflectivity core.  At the very least, this may show that the 20 NM 

avoidance rule would, indeed, be adequate. 

1.5. Thesis Organization 

This initial chapter served as a brief introduction to the research topic and its 

importance to the Air Force.  The next chapter is designed to allow the reader to gain 

insight into some necessary background information.  A very brief discussion of lightning 

basics is presented, followed by information about the LDAR system at the KSC.  The 

radar coverage over the KSC area is also detailed.  Chapter three describes the 

methodologies employed to process the LDAR and radar data and to merge the resulting 
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data sets.  A brief explanation of how case study days were chosen is presented as well.  

Analyses of the findings of this research are offered in the fourth chapter.  The final 

chapter outlines the conclusions reached and suggests possible future research that could 

further this project. 
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II. Background 

2.1. Thunderstorm Electrical Structure 

The conceptual model of the electrical charge distributions in thunderstorms has 

evolved as better measurement techniques have been developed.  The classical tripole 

model of thunderstorm charge distribution was developed in the 1920s and 1930s based 

upon ground-based electric field measurements (Uman and Krider 1989).  Figure 1 

depicts the classic tripole model, which consists of a main negatively charged region 

below the main (upper) positively charged region plus a lower positively charged region. 

 

 

Figure 1. Classic tripole model of charge distribution. Tripole model consists of a main negative region 
below a main (upper) positively charged region, plus a weak, lower, positive region. (adapted from 

McIlveen 1992). 
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A more detailed conceptual model, based upon balloon soundings of the electrical 

structure of thunderstorms from three different types of convection: organized multicell, 

isolated super-cell, and multicell airmass, has recently been suggested (Stoltzenburg et al. 

1988).  The charge distributions in this new model are more complex than the classic 

tripole model, however, there are traits that are common to all three types of convection.  

Figure 2 shows this new paradigm with four charged regions in the vertical column 

around the updraft and six charged regions outside of the updraft.  It is asserted that the 

classic tripole model may be imbedded in these charge regions.  With this model in mind, 

we can now examine the lightning discharge. 

 

 

Figure 2. Modified conceptual model of charge distribution.  The modified model of charge distribution 
shows four charged regions in the updraft region of the storm and six charged regions outside the updraft 

region.  (adapted from Stoltzenburg et al. 1998). 
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2.2. The Lightning Discharge Process 

Uman and Krider (1989) define lightning as, “a transient, high-current discharge 

with a path length measured in kilometers.”  Lightning is classified in four basic ways: 

(1) lightning that occurs wholly within the cloud, (2) cloud-to-cloud discharges, (3) 

cloud-to-air discharges, and (4) cloud-to-ground lightning (CG).  These first three types 

of discharges are collectively known as cloud discharges as they never actually reach the 

ground.  It is estimated that for every CG discharge in the continental United States, there 

are almost three cloud discharges (Boccippio et al. 2000).  However, much more is 

known about the processes that take place during CG lightning, so we’ll first examine CG 

basics to get a better understanding of what may be occurring in cloud discharges. 

2.2.1. CG Lightning.  Most of the research accomplished to date has focused 

primarily on CG lightning.  Two of the primary reasons are that it poses a much greater 

threat to human life and property, and it is also easier to study using optical techniques 

(Uman and Krider 1989).  Lightning discharges between cloud and Earth can be either 

positive or negative—as determined by the dominant charge present at the source region.  

CG discharges of either polarity can be initiated from the cloud downward, or much less 

frequently from the ground upward.  Uman and Krider (1989) point out that negative 

downward-propagating CG flashes account for about 90% of all CG lightning worldwide. 

A negative CG flash can lower tens of coulombs of negative electrical charge to 

Earth and last for about half a second (Uman and Krider 1989).  A single lightning flash 

can have several high-current pulses called strokes.  These strokes occur on order of only 

a millisecond with a slight delay of tens of milliseconds between strokes.  In order for a 
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stroke to occur, a pathway must be present.  The channel that transports the charge is 

called a stepped leader. 

When the charged region in part of a cloud reaches a critical threshold, a 

preliminary breakdown occurs and a stepped leader is initiated (Uman and Krider 1989).  

These leader steps are typically about 1 µs in duration, 50 m in length, and have a delay 

between steps of 20 to 50 µs.  As the stepped leader nears the ground, the electric field on 

the ground builds until the breakdown strength of the air is exceeded.  When this 

happens, upward-moving discharges are initiated from sharp objects on the ground or 

irregularities on the surface (Uman and Krider 1989). 

When one of these upward-moving discharges meets the downward-moving 

stepped leader, the leader is effectively connected to ground potential and an ionizing 

wave of ground potential propagates up the ionized leader channel (Uman and Krider 

1989).  This is the first return stroke, which typically lasts on order of 100 µs.  The leader 

channel is heated to a peak temperature of about 30,000 K due to the rapid release of 

energy (Uman and Krider 1989).  As a result of the temperature increase, the channel 

expands and causes a compression wave that becomes thunder.  If enough cloud charge is 

still available after the first return stroke, a dart leader can propagate down the original 

path and trigger further return strokes. 

The peak current in a positive CG flash is typically much greater than that of a 

negative CG flash, but much less is known about the exact nature of positive CG flashes 

(Uman and Krider 1989).  The stepped-leaders in a positive CG discharge are normally 

not as discretely stepped as they are in a negative flash.  Positive flashes normally only 
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have one return stroke and positive flashes are much more common in winter than in 

summer months (Uman and Krider 1989). 

2.2.2. Cloud Discharges.  Until recently, there was no reliable way to 

understand the structure of cloud discharges, but the development of three-dimensional 

lightning mapping systems has opened the door to a better understanding of what is 

occurring within the cloud (Rison et al. 1999).  Examination of data from these systems 

has confirmed that, normally, a bipolar breakdown occurs between the main negative and 

the upper positively charged regions of a cloud.  Cloud discharges can move tens of 

coulombs of charge over a distance of 5 to 10 km, or more (Uman and Krider 1989).  

Both CG flashes and cloud discharges release electromagnetic energy as they propagate 

through the atmosphere; these 3D lightning detection systems take advantage of that fact 

to aid in locating where these events are taking place. 

2.3. Lightning Detection and Ranging (LDAR) 

The LDAR system was developed primarily by Carl Lennon, a former National 

Aeronautical and Space Administration (NASA) engineer, in the mid-1970’s in support 

of lightning research efforts at the KSC in Florida (Starr et al. 1998).  The system consists 

of seven VHF antennas separated by 5-10 km located near the KSC launch facilities 

(Figure 3).  Pulses of VHF energy emitted during the stepped leader process of a 

lightning event are located in east/west, north/south, and height coordinates from the 

central site.  It locates these points by determining the relative difference in the time of 

arrival (TOA) of a VHF pulse at several antennas in the array.  The central site antenna is 

the critical element of this system architecture; it must detect a signal for any processing 
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to occur (Starr et al. 1998).  To understand how the system determines the location of an 

event, we will examine the data flow in the system. 

 

 

Figure 3. KSC LDAR Antenna Locations.  This map of the KSC area shows the relative locations of the 
seven antennas in the LDAR array.  The antennas are seperated by about 5 – 10 km and are spread out 

about the LDAR central site—site 0 on the map. (Adapted from Starr et al., 1998). 
 

2.3.1. Data Flow in LDAR System.  The RF energy that the system detects is in  

the VHF region centered at 63 MHz, which is in the middle of the spectrum allocated to 

television channel 3 (Lennon and Maier 1991).  This frequency was chosen not only 

because it is within the spectrum of pulse energy emitted by lightning processes, but also 

because there was no local channel 3 operating in the KSC area when the system was 

designed.  When the central site detects an RF pulse that exceeds a certain threshold, the 
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system is triggered and the remote antennas transmit time of arrival data to the central 

site (Lennon and Maier 1991). 

The same pulse of RF energy detected by the central site may actually arrive at 

one, or more, of the remote antennas before being detected by the central site.  The 

processing that takes place at the remote sensor sites, however, ensures that the central 

site will receive the direct signal before any of the timing data is received from the 

remote sites.  When a detected event triggers the system, a 100 µs data analysis period 

begins (Murphy et al. 2000).  Once the data analysis period ends, the relative TOA of the 

pulse at the remote antennas is calculated and the time difference is used to determine the 

position of the event.  This location process involves hyperbolic triangulation (Rustan et 

al. 1980).  The data are then sent to a display workstation for graphical display and are 

also tagged with the appropriate position and timing data and cataloged digitally.  With 

this basic understanding of how the LDAR system detects and locates VHF pulses 

emitted by the lightning process, it’s important to gain some insight into just how 

accurate this location is. 

2.3.2. Accuracy of LDAR Data.  The accuracy of LDAR data is a function of 

the range from the central site and the altitude of the event (Murphy et al. 2000).  Most of 

the altitude errors are linked to the fact that all LDAR elevation calculations are based 

upon a flat plane earth and do not account for curvature of the Earth—although these 

curvature errors are only significant outside of about 100 km range from the LDAR 

location (Boccippio et al. 2001).  The range error is the paramount accuracy issue with 

LDAR data.  Maier et al. (1995) found the median range error to be about 1km location 

error at a 40 km range from the LDAR central site; this was determined by using a signal 
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generator aboard an aircraft and comparing the known aircraft locations with LDAR 

derived locations.  One of the primary causes of the range inaccuracy stems from a 

difficulty in precisely determining the TOA of the peak of a signal in a pulse of RF 

energy (Boccippio et al. 2001). 

2.4. Radar Coverage of the Kennedy Space Center Area 

The WSR-88D at the NWS field office in Melbourne, Florida provides good 

weather radar coverage of the KSC area.  Their radar is located 1.13 km west and 47.32 

km south of the LDAR central site.  The height of the radar beam over the KSC area can 

be determined (with reasonable accuracy) using the following equation (Rinehart 1997): 

0
22 sin2 HRRrRrH +′−′+′+= φ   (1) 

where H is the height of the center of the beam, r is the range to the point of interest from 

the radar, φ  is the elevation angle in degrees of the radar scan—0.5 degrees for the 

lowest WSR-88D elevation scan, H0 is the height of the radar antenna—about 30 m for 

the WSR-88D, and R' is the effective radius of the earth which accounts for the refractive 

index gradient along the path of propagation.  All calculations and grid interpolations 

used in this project are based upon the assumption of standard refractivity using 

(R 34=′ )R , where R is the radius of the earth—assumed to be constant at 6374 km for 

the volume coverage pattern (VCP) and beam height calculations shown here.  These 

assumptions lead to an estimated central beam height of just over 600 m above the center 

of the LDAR network for the lowest elevation angle.    Figure 4 shows the relative 

position of the WSR-88D to the KSC area. 

16 



 

 

Figure 4. Map of Melbourne WSR-88D location.  This map shows the relative position of the 
Melbourne, FL WSR-88D to the KSC.  Range rings every 10 km are depicted.  The LDAR central site is 

located just less than 50 km north of the radar site. 
 

 

The WSR-88D operates in two modes: clear-air mode and precipitation mode.  

When the radar is operating in precipitation mode there are two VCP’s that are used: 

VCP-21 and VCP-11.  A radar volume created in VCP-21 mode is made up of scans at 

nine elevations (0.5°, 1.45°, 2.4°, 3.35°, 4.3°, 6.0°, 9.9°, 14.6°, and 19.5°) and is 

accomplished in about six minutes.  VCP-11 mode provides scans at fourteen elevation 

levels (0.5°, 1.45°, 2.4°, 3.35°, 4.3°, 5.25°, 6.2°, 7.5°, 8.7°, 10.0°, 12.0°, 14.0°, 16.7°, and 

19.5°) and is completed in about five minutes.  Figure 5 shows the coverage provided by 
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the two precipitation mode VCP’s.  The 50 km range line is in bold to serve as a 

reference to the coverage south and north of the LDAR central site. 

 

Figure 5. Radar coverage provided by VCP-11 and VCP-21.  These images show the coverage provided 
by the two precipitation-mode VCP’s provided by the WSR-88D.  The gray areas represent areas of 

coverage and the white regions represent areas with no coverage. 
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Figure 5 reveals that south of the LDAR central site there is very sparse coverage 

at higher altitudes.  In fact, just 20 km south of the LDAR site, there is no radar coverage 

above 10 km and very limited coverage above 6 km; this limitation in radar coverage is 

very significant since Boccippio et al. (2001) found that the majority of LDAR data 

points occur at about 9 km above the ground.  It is also clear that north of the LDAR site, 

much better radar coverage of the upper troposphere is provided by VCP-11 than by 

VCP-21.  However, even with this improved data coverage, there are gaps in the radar 

coverage at higher elevations. 
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III. Research Methodology 

This section chronicles the procedures that were followed and the logic employed 

to process the raw LDAR data points into lightning flashes, transpose WSR-88D archive 

Level II data to a 3D grid of radar reflectivity factor values, and to then merge these two 

data sets to extract meaningful data about the radar signatures of LDAR data points.  As 

mentioned earlier, this project is one of three current projects being researched by 

students at AFIT.  More than four years of LDAR data were processed, though only ten 

days of lightning and radar data are used for this particular study.  This section also 

outlines how days were selected for the case studies. 

3.1. LDAR Data Point Flash Grouping 

The first task to be accomplished before any of the three AFIT projects could be 

undertaken was to group the LDAR data points—which essentially represent the 

locations of the stepped leaders in a lightning channel—into individual lightning flashes.  

More than 330 million LDAR data points had to be grouped into lightning flashes.  An 

extensive amount of computing time was required to process the massive amount of raw 

LDAR data into LDAR flash-grouped files.  The largest day in the data set consisted of 

over eight million individual data points; the program ran for almost two weeks to 

process that day’s lightning activity where more than 120,000 flashes were identified. 

The flash-grouping algorithm used by NASA and described by Murphy et al. 

(2000) was used as the model for grouping individual LDAR data points into lightning 

flashes.  NASA’s flash-grouping routines—which are, at the time of this publication, 

available on the NASA public web site—are written in the C programming language.  

20 



 

This code was closely examined and used as a blueprint for the flash-grouping algorithm 

employed in this and the two concurrent studies at AFIT (NASA 2001).   Appendix A 

shows the code of the AFIT flash-grouping program written for the Interactive Data 

Language (IDL) environment.  The algorithm groups LDAR data points into flashes 

based upon the same spatial and essentially the same temporal constraints as the NASA 

algorithm. 

The raw LDAR data files are ASCII text files that contain timing and location 

information; the time is recorded to the microsecond and the location of the event is 

given, in meters, north/south [x], east/west [y], and height [z] above ground level on a flat 

plane tangent to the LDAR central site.  Data points from a calibration signal used to 

ensure proper synchronization of the system are included in the LDAR data files and are 

easily removed by the flash-grouping program.  The location of this signal is known to 

within meters, so a simple filter is employed to remove any signal from the region 

immediately around the calibration signal’s source.  Once this calibration noise is 

removed from the data set, the examination of the remaining data points begins. 

The algorithm determines the following information about each point in an LDAR 

data file: the line number, flash number, branch number, branch index number, and the 

parent point.  The line number is simply determined by sequentially numbering each data 

point in the file and is used to identify a point.  The flash number identifies all the points 

that are part of the same lightning flash; LDAR data points that don’t meet the spatial and 

temporal constraints are given a flash number of negative one which indicates that these 

points are not part of any lightning flash.  The branch number identifies points that are 

determined to be part of the same branch in a lightning flash.  The branch index number 
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indicates the point’s sequential position in a branch.  Also, the first point in a branch is 

given a parent point number that corresponds to the line number of the point in the flash 

that is closest to this first point in a new branch.  By saving the preceding information for 

each point in an LDAR data file, each lightning flash can be reconstructed without any 

further processing. 

To identify the data points that are part of a lightning flash, the first point in the 

LDAR file that does not have a flash number yet assigned is tentatively considered to be 

the origin point of the next flash.  All LDAR data points that occur within the next three 

seconds of this potential flash origin point, that have not been identified as part of a 

previous flash, are examined to determine if they are part of this new flash.  The basic 

spatial criterion for flash grouping is 5 km.  Due to the LDAR location errors described in 

Chapter 2, this 5-km radius is expanded into an ellipse to account for the range and 

azimuth errors in locating data points as shown in Figure 6.  When examining a point to 

see if it is part of the current flash, all points already identified as part of the current flash 

are checked to determine if any of those points fall within this ellipse.  If any points in the 

current flash do fall in this region, then the point has met the spatial criteria to be 

considered part of the current flash. 

When a point has met the spatial criteria to be included in a flash, the difference 

in the end time of the flash—which originally is the time of the origin point and is later 

updated each time a point is added, since the LDAR data are in time sequence order—and 

the time of the point is checked.  If there is more than a 0.5 second difference between the 

time of the point being checked and the flash end time, the point is considered to be too 

far outside the time constraints and the flash is considered terminated.  It is clear that 
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multiple lightning flashes can (and do) occur at the same time in different regions around 

the LDAR system; fortunately, LDAR is capable of identifying points from simultaneous 

flashes in multiple locations.  This half-second constraint allows for points that might be 

missed from one lightning flash when there is a virtually simultaneous flash elsewhere. 

 

 

Figure 6. LDAR Flash Grouping Ellipse Diagram.  This picture shows the 5 km radius used as the 
spatial criterion for flash grouping and the orientation of the ellipse around the LDAR data point (p).  The 

semi-minor axis (A) is oriented perpendicular to a line connecting the point p to the LDAR central site.  
The length of this axis is the 5 km radius plus a one-degree azimuthal error.  The semi-major axis (B) 

represents the 5 km radius plus a range location error factor and is oriented along the line connecting point 
p to the LDAR central site. 

 
 
 

The flashes identified by the program are further grouped into branches of 

lightning again using a spatial and temporal test.  The basic spatial proximity for a point 

to be considered part of an existing branch is that the point be within 1km of the endpoint 
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of an existing branch in this flash—beyond a 40 km range from the LDAR central site, 

this 1-km radius is expanded to account for location errors.  The time constraint on 

including a point in a branch is 0.03 seconds from the end time of the branch.  If a point 

is found to meet both the spatial and temporal constraints to be included in an existing 

branch, the branch number of the point is set, the point is assigned the next branch index 

number, and the end point and end time for this branch is updated with this new branch 

point’s information.  If a point does not meet the temporal and distance constraints, it is 

considered to be the first point in a new branch; the nearest point in the flash to this point 

is then designated the parent point of this new branch. 

If a flash is found that contains only one or two points, it is not considered to be a 

valid flash.  The flash number of the origin point of this incomplete flash is set to 

negative one, while the other points in the incomplete flash are reset to allow 

consideration for inclusion in another flash.  Since the LDAR data files are ordered 

sequentially by time, the process described here simply repeats until all points have either 

been grouped into flashes or found to be incoherent noise.  After the program executes, 

the output is saved to a text file.  These output files include all of the original data from 

the valid—non-calibration—LDAR data points for each day, plus the flash and branch 

information described above.  Once the LDAR flash files were processed, the next step 

was to select days for the case study. 

3.2. Case Study Selection 

The nature of working with archived radar data makes it impractical—if not 

utterly impossible—to merge several years of lightning data with radar data.  Therefore, 

the intent was to select several days of thunderstorm activity near the KSC, preferably 
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while experiencing the influence of a variety of weather regimes.  The possibility of 

examining lightning and radar data while the KSC area was under the influence of either 

a tropical storm or hurricane was examined, but no available days of the LDAR activity 

could be associated with the archived tracks of tropical storms.  So, two types of weather 

making conditions were selected for case studies: synoptic and airmass. 

3.2.1. Synoptic Cases.  The term synoptic in this context is used to describe 

days where the thunderstorm activity in the KSC area is caused primarily by the passage 

of a synoptic-scale weather system such as a mid-latitude cold front that extends down to 

the Florida peninsula.  The Bermuda high normally dominates during the summer months 

and prevents most cold fronts from reaching central Florida intact.  In the late-winter and 

early-spring months, however, cold fronts do tend to influence the weather in Florida and 

are one of the major weather producers during this time.  The methodology used to 

determine potential days for case study of synoptic cases involved examining the size of 

LDAR flash grouped data files and national radar mosaic images. 

LDAR data files from 1997 through the summer of 2001 that were processed with 

the flash-grouping algorithm (see Appendix A) were sorted by size.  The file naming 

convention used for the LDAR flash-grouped files allowed easy identification of the date 

of the file.  Days with a large file size—indicating a great deal of lightning activity 

around the KSC—that occurred in the late-winter/early-spring were noted.  Next, national 

radar mosaic images, archived on the NCDC web site, were examined to look for 

signatures of either a squall line or a cold front moving through the KSC area on the days 

of significant LDAR activity.  One synoptic day from each year of available data was 

then selected.  Table 1 shows quantitative data for the five synoptic days that were 
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chosen.  The number of non-calibration LDAR data points and the number of lightning 

flashes identified by the flash-grouping algorithm for each day are shown.  The average 

number of LDAR data points per lightning flash for each day is also included.  It should 

be noted that data included in this table cover the entire day and not just the time when 

thunderstorm activity was in the immediate KSC area.  For these five days, the flash-

grouping program processed more than 288,000 lightning flashes, consisting of more 

than 17 million data points.  This equates to an average flash rate over the entire domain 

of the LDAR network of about 40 flashes per minute, which was sustained for 120 hours.  

The extremely large influence of 23 April 1997, where the flash rate is 89 flashes per 

minute over the 24-hour period, must be taken into account, however.  The other four 

days yield an average flash rate of almost 28 flashes per minute. 

 

Table 1. Total LDAR Flash Activity on Chosen Synoptic Days. 

 

3.2.2. Airmass Cases.  There were many more LDAR data files that indicated 

significant lightning activity in the summer months and that would have potentially been 

good choices for inclusion in the airmass cases.  Most late-spring to late-fall days in 

central Florida have a good chance of airmass thunderstorm development; the area 

around the KSC is known as lightning alley for this very reason.  The larger pool of days 
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with significant LDAR activity in the summer time frame made it more difficult to pick 

days for the airmass cases.  Again, the national radar mosaics were examined, but it was 

much more difficult to identify exactly were the thunderstorms were occurring in relation 

to the KSC; the lack of linear radar echo features—such as was normally present in the 

synoptic events—made the selection process for the airmass days much harder. 

Table 2 shows the LDAR activity for the five chosen airmass case study days.  

Again, the data here are for the entire day and not just when thunderstorms were 

occurring in the immediate KSC area.  The flash-grouping algorithm grouped more than 

160,000 flashes, which were made up of more than 11 million data points, for these five 

days.  The average number of LDAR data points per lightning flash is about 71, 

compared to an average of about 61 for the synoptic days.  Similarly, the average flash 

rate over the five-day period—and over the entire LDAR network range—is about 22 

flashes per minute; this is significantly less than the 40 flashes per minute noted in the 

synoptic cases, but not that much different than the flash rate of about 28 flashes per 

minute for the synoptic cases when the 23 April 1997 influence is accounted for. 

 

Table 2. Total LDAR Activity on Chosen Airmass Days. 
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3.3. Radar Data Processing 

Once the case study days were chosen, the radar data for each identified day were 

ordered from NCDC through the Air Force Combat Climatology Center.  The WSR-88D 

archive Level II data arrived on 8mm data tape.  The National Center for Atmospheric 

Research (NCAR), Mesoscale and Microscale  Meteorology (MMM) Division, 

developed software that can translate this WSR-88D archive Level II radar data to a 3D 

Cartesian grid of reflectivity values. 

3.3.1. Translation to 3D Grid.  The Sorted Position Radar Interpolation 

(SPRINT) program was used to process the WSR-88D archive Level II data files.  

SPRINT creates a 3D data set of floating-point radar reflectivity factor (in dBZ) values 

by converting reflectivity data stored in azimuth, range, and elevation angle format in the 

NCDC archive Level II files to a 3D Cartesian grid of reflectivity.  A standard 

atmosphere—using a 4/3 effective earth radius approximation—is used by SPRINT to 

determine the height above ground level as the beam propagates away from the radar site.  

Defining the size and resolution of the grid is the critical step in processing the archived 

radar data. 

The 3D grid that was defined has 201 points in the x-direction (east/west), 101 

grid points in the y-direction (north/south), and 34 layers in the vertical, with a horizontal 

and vertical resolution of 500 m.  The [x,y] grid location closest to the LDAR central site 

is [100,0].  The LDAR central site is located about 1.13 km east, and 47.32 km north, of 

the WSR-88D location.  SPRINT does not allow the exact positioning of the grid to this 

precision, so the actual position of the [100,0] grid point is 47.5 km north, and 1.0 km 

east, of the radar; the grid point [100,0] is therefore about 222 m northwest of the LDAR 
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central site.  The grid covers an area of 20,000 km2 and extends 50 km west, north, and 

east of the LDAR central site.  The grid also provided coverage from 500 m above 

ground level to 17km in the vertical.  This equates to a volume of 340,000 km3 with 

690,234 data points.  A planar view of this radar grid over a map background is shown in 

Figure 7.   

 

 

Figure 7.  Planar View of Radar Grid.  There are 201 points in the x-direction and 101 points in the y-
direction.  The LDAR central site is located just southwest of the point [100,0].  The lines shown are drawn 
every kilometer, but the actual resolution of the grid is 500 m.  Not depicted in this 2-dimensional drawing 

is the 34 layers in the vertical that also provide a 500 m resolution from 500 m to 17 km altitude. 
 
 

The limits of the radar coverage at higher altitudes provided by the two WSR-88D 

precipitation modes (VCP21 and VCP11) south of the LDAR central site were the 

primary factor considered when the grid was defined.  Having the grid only extend to the 

north of the LDAR central site ensures better coverage from the surface to 17 km (about 

55 Kft).  SPRINT restricts the number of data points that can be included in the Cartesian 

reflectivity grids it creates, which was the major reason for the choice of a 500 m grid 
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resolution.  The output data files created by SPRINT are saved in a format that can 

essentially only be read by another program developed by NCAR/MMM. 

The Custom Editing and Display of Reduced Information in Cartesian space 

(CEDRIC) program was used to translate the SPRINT output files to a more useful 

format.  One of the CEDRIC options is to convert SPRINT binary output data files to 

Network Common Data Format (NetCDF) files.  NASA and the Unidata program at the 

University Corporation for Atmospheric Research jointly developed the NetCDF as a 

standard way of storing and sharing scientific information.  IDL has built-in routines that 

allow easy access to data structures stored in NetCDF.  With these IDL routines, the 3D 

grid of reflectivity values can easily be read into a 3D array of floating point numbers.  In 

addition to the reflectivity information, the start and end time of the radar volume can 

easily be extracted from these NetCDF files. 

The 3D array of dBZ values created by SPRINT/CEDRIC is then used to create a 

2D array of composite reflectivity.  Any mention in this study to the base reflectivity of a 

point refers to the 3D reflectivity array, and references to composite reflectivity refer to 

the 2D data set.  To create the composite reflectivity array, the maximum base reflectivity 

value in the vertical column for each [x,y] location is assigned as the composite 

reflectivity value for that [x,y] grid point. 

To ensure that the radar volumes created with this process were valid, sample 

base and composite reflectivity images were verified by comparing planar and 3D views 

of the SPRINT/CEDRIC processed data with planar views of composite and base 

reflectivity created using the WSR-88D Algorithm Testing and Display System 

(WATADS) software.  The images confirmed that the interpolation to the 3D grid was 
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indeed successful; landmark and radar signature correlation was very good.  There were, 

however, problems encountered when running SPRINT and there were also some data 

quality issues identified when looking at some of the 3D radar volumes. 

3.3.2. Efficiency and Radar Processing Issues.  In order to process the 

WSR-88D archive Level II data, the data files first had to be dumped from the 8-mm data 

tape to a hard drive storage device.  To run the SPRINT program, a script file was created 

that defined the location and resolution of the desired 3D grid of reflectivity values.  

SPRINT execution was quite fast; it normally took less than 30 seconds to process a radar 

volume.  The CEDRIC program ran even faster, normally completing execution in only a 

few seconds per radar volume.  A script file to allow the processing of multiple radar 

volumes consecutively with one call to the SPRINT executable was created.  It would 

appear to complete execution normally.  A companion script file to convert the multiple 

files created by the SPRINT run to NetCDF file format with a single call to CEDRIC was 

created.  Upon execution of this script, however, a problem soon became evident. 

Not all of the WSR-88D source radar volume files were being processed by 

SPRINT.  SPRINT would periodically encounter a situation where, for an unknown 

reason, it was unable to match the volume scan data to the 3D grid; when this problem 

occurs, SPRINT would simply not create an output file for that volume and would 

attempt to process the remaining source radar volume files.  When the CEDRIC script 

file tried to access the SPRINT output files, there would be missing input files and 

CEDRIC would halt and cause a core dump.  Eventually, all radar volumes were 

processed, one file at a time; this became a very tedious procedure. 
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While processing the raw radar volumes with SPRINT, an inventory of radar 

volumes that SPRINT was unable to process was kept.  In fact, 14% of the source radar 

volume files (73 out of 523) could not be processed by SPRINT.  No determination of 

what was causing the malfunction could be identified.  The source radar volumes were 

processed and viewed with WATADS to check for data gaps or missing elevation levels, 

and no such problems with the source data could be found.  Later, another problem with 

the SPRINT processing was discovered when viewing the 3D radar volumes using IDL’s 

object-oriented graphics rendering capabilities. 

Eventually, all 450 radar volume files that were successfully processed—at least 

those not causing an error—by SPRINT were visually examined.  Of these files, 42 were 

found to have no meaningful radar echoes; this doesn’t mean that the data was bad, rather 

that these volumes were for inactive periods where there was no lightning activity.  This 

leaves 408 radar volume files that SPRINT processed and CEDRIC translated without 

causing an error.  However, visual inspection of all 408 radar volumes found that 27% of 

these files—111 of the 408—had significant sections of data missing that would make 

even a composite reflectivity computation unreliable—73% of the files were, at least, 

partially usable.  These 111 volumes were deemed unusable and were excluded from use 

for any reflectivity or distance computations.  For a graphic example of this type of error, 

see Figure 16 in Appendix B. 

Of the 297 remaining radar volume files, about 70% were found to be fully usable 

and were used for both composite and base reflectivity calculations, and distance 

computations.  The other 30% were subjectively deemed to be partially usable radar 

volumes.  Partially usable radar volumes were complete enough that an accurate 
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composite reflectivity image grid could reasonably be created from the 3D reflectivity 

grid, but too much data were missing for reliable base reflectivity and distance 

determination.  Figure 17 in Appendix B is an example of a partially usable radar 

volume. 

3.4. Merging LDAR and Radar Data 

Once the 2D and 3D arrays of reflectivity were created, it was possible to merge 

the radar and lightning data sets.  Since the relative location of the LDAR central site to 

the point [100,0] in the reflectivity grids is known, a simple coordinate transformation is 

all that is required to convert the LDAR data point location to the radar reflectivity grid.  

The equations used for this coordinate transform are as follows: 

)500/)130.((100 ++= xflashx  (2) 

500/)180.( −= yflashy   (3) 

)500/)500.( −= zflashz   (4) 

where the x, y, and z location of the LDAR data point (in meters) is denoted by flash.x, 

flash.y, and flash.z respectively.  The result of these equations is the x, y, and z grid 

location of the LDAR data point relative to the 3D base reflectivity grid—or the 2D 

composite reflectivity grid if only the x and y locations are considered.  This location will 

normally not fall exactly on a grid point, so optimal interpolation is used to determine the 

radar reflectivity factor for each LDAR data point in a lightning flash.  In an effort to 

provide aircrew members with relevant guidance based upon what they can expect to 

observe on their radar displays, the distances from LDAR data points to critical 

reflectivity thresholds are examined.  The procedures used to calculate this information 

are detailed in this section. 
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3.4.1. Determining Reflectivity.  To determine the radar reflectivity for the 

points in LDAR flashes, the LDAR flash data file for the day being examined is opened 

and all data is read into an array of data structures with the timing, location, and 

flash/branch information for each data point.  The first radar volume file to be merged 

with the lightning data is opened.  A 3D base reflectivity array and a 2D composite 

reflectivity array are created as described earlier, and the start time and end time of the 

radar volume are extracted from the NetCDF radar volume file.  Only lightning flashes 

that occur in the proper time window and whose points are all within the radar reflectivity 

grid are considered. 

The LDAR data array is searched to identify the flash origin points that are within 

the time window of the radar volume and that are located within the 100 km by 50 km 

radar grid.  Once the flash origins are identified, each flash whose origin point is within 

the grid is checked to see if all points in the flash are, too, entirely within the confines of 

the radar grid.  Once the flashes that meet the time and space criteria are identified, the 

individual data points of each flash are examined to determine the radar reflectivity factor 

by using the coordinate transformation equations and optimal interpolation.  Both the 3D 

base and the 2D composite reflectivity for each data point are calculated.  This process 

continues for all of the identified flashes that occur within the temporal bounds of the 

radar volume NetCDF file—normally a span of five to six minutes. 

The next radar volume file is then opened and the process repeats until all radar 

volumes have been examined.  The time window of the subsequent radar volumes is 

taken from the end time of the previous radar volume scan to the end time of the current 

radar volume scan to avoid missing any flashes that originate during the slight delay 
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between radar volume times.  If there are missing radar volume scans, which there 

commonly are due to the problems with the SPRINT interpretation of some radar 

volumes, the start and end time of the volume is once again used and some of the 

lightning data is skipped since there is no corresponding radar data. 

For each radar volume scan, a new lightning data file is created and saved with all 

the timing, location, flash/branch information from the LDAR flash file, plus the 

reflectivity—both 3D base and 2D composite—data all the points in the flashes that 

occur within the time and space constraints for the radar volume.  Saving the data for 

these five to six minute windows, and with a much smaller spatial region, greatly reduces 

the individual data file size and increases the speed of processing the data for subsequent 

analysis.  The reflectivity data files that are saved during this step can be directly 

compared with the associated radar volume to determine the distances of these LDAR 

data points from significant radar echoes. 

3.4.2. Determining Distances from Radar Echoes.  The radar display on the 

Air Force’s C-17 aircraft shows radar echoes with a three-color scheme.  Radar echoes 

greater than or equal to 40 dBZ are displayed in red, while reflectivity values between 30 

and 40 dBZ are portrayed in yellow, and 20 to 30 dBZ echoes are shown in green (Lorenz 

2001).  Since the C-17 only displays reflectivity data in three colors, the 40-dBZ  

threshold was chosen as the best reflectivity value to represent the reflectivity core of the 

thunderstorm cells that lightning distances should be measured from.  Interestingly, 

Gremillion and Orville (1999) identified a possible relationship between the detection of 

the 40-dBZ echo at the level of the –10° C temperature and CG lightning initiation in 

airmass thunderstorms near the KSC.  Hoffert and Pearce (1996) also noted that most 
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LDAR activity was initiated directly above the reflectivity cores in the thunderstorms 

around the KSC that they investigated—although they identified the reflectivity core as 

being above 30 dBZ.  As such, the distances to be measured will be from the nearest 40-

dBZ threshold of reflectivity. 

An IDL program was written to calculate the distance of LDAR data points from 

these radar echo cores.  The program opens a NetCDF radar volume file to extract the 3D 

base reflectivity volume and the corresponding LDAR flash reflectivity file with the 

lightning flash data points.  The reflectivity at each grid point in the 3D radar array is 

rounded to the nearest integer dBZ value to aid in identifying the location of the threshold 

between the yellow (30 – 40 dBZ) region of a C-17 display and the red (40 dBZ or 

higher) echo.  A 2D composite reflectivity grid is then created from this modified 3D 

base reflectivity volume. 

All points in the base and composite reflectivity arrays with a radar reflectivity 

value greater than or equal to 40 dBZ are identified and the grid locations of these points 

are stored in an array.  The points in both the base and composite reflectivity arrays that 

have radar reflectivity values of between 30 – 39 dBZ are identified as well.  Again, these 

thresholds correspond to the red and yellow displays of the C-17 radar, respectively, but 

would also correspond to a WSR-88D 40-dBZ threshold on a composite reflectivity 

display.  With the locations of theses critical radar data points saved in appropriate arrays, 

the distance to the nearest of these points from any LDAR data point can be calculated.  

Recall that the LDAR data files used by this program contain only flashes that occur 

entirely within the corresponding radar volume—based upon spatial and temporal 

constraints.  These data files have all the original LDAR data (time and position data), 
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plus the flash grouping data (flash number, etc.), as well as the radar reflectivity data 

(base and composite).  For each LDAR data point, two distances are calculated. 

The first distance is the horizontal distance from the LDAR data point’s [x,y] 

location to the edge of the nearest 40-dBZ composite reflectivity threshold (the 

red/yellow line on a C-17 radar display).  If the LDAR data point has a composite 

reflectivity value greater than or equal to 40 dBZ, the distance is calculated, in meters, to 

the nearest radar grid point with a radar reflectivity of between 30 – 39 dBZ (yellow on 

the C-17 display).  This distance indicates how far the point is inside the red radar echo, 

as displayed by the C-17 radar.  If the LDAR data point has a composite reflectivity value 

of less than 40 dBZ, the horizontal distance to the nearest composite reflectivity grid 

point of 40 dBZ or higher is calculated.  By convention, any distance that represents how 

far an LDAR data point is inside a given radar reflectivity threshold is considered to be a 

negative distance; a positive distance, therefore, indicates how far outside of a reflectivity 

threshold a point is. 

The second distance that is measured is a 3D distance, in meters, from the LDAR 

data point’s [x,y,z] location to the nearest red/yellow threshold as would be displayed by 

the C-17 radar.  Here, if a point has a base reflectivity of greater than 40 dBZ, the 

distance to the nearest 3D radar grid location with a reflectivity of between 30 – 39 dBZ 

is calculated, and interpreted as a negative value.  For LDAR points with a base 

reflectivity of less than 40 dBZ, the distance to the nearest 40 dBZ or higher base 

reflectivity location is calculated.  This effectively measures the distance from each point 

in the LDAR reflectivity data file to the nearest 40-dBZ line on a radar display.  One 

additional constraint is placed upon flashes to be considered for the base reflectivity 
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computations, if the flash origin reflectivity value has a value of less than zero (dBZ), the 

flash is ignored.  The reason for this constraint is to eliminate the influence of bad data 

points left over from the SPRINT interpolation.  SPRINT assigns a reflectivity of –32768 

to indicate bad data.  Radar volumes that were marginal as far as the subjective analysis 

of whether or not a volume was usable tend to have numerous LDAR data points that 

return a reflectivity value of –32768.  The conservative approach that if a flash origin is 

being influenced by corrupt (or missing, due to the gaps in the particular VCP) data, then 

any inference about distances would be suspect.  In addition, if more that 25% of the 

points in a flash were bad data, no base reflectivity based distance calculations were 

accomplished, again to avoid data corruption. 

The net result of this constraint, combined with the elimination of the 27% of the 

processed radar volumes that were too corrupt to reliably determine any base reflectivity 

distance calculations, is that the final sample size of the base reflectivity dataset is much 

smaller than the final composite reflectivity dataset.  Table 3 shows the breakdown of the 

lightning activity for the 297 radar volumes that are being processed for composite 

reflectivity calculations.  These radar volumes cover a time span of approximately 25 

hours of thunderstorm activity; this equates to a sustained flash rate—only within the 

spatial confines of the defined radar grid—of about 13 flashes per minute. 

Table 4 shows the same information for the limited data set that is being 

considered for base reflectivity computations.  The 209 radar volumes that were deemed 

usable for base reflectivity considerations correspond to about 18 hours of thunderstorm 

activity.  The 8,515 lightning flashes with both the origin point and at least 75% of all 

points that are not influenced by bad radar data represents a sustained flash rate of about 

38 



 

eight flashes per minute within the bounds of the 3D radar volume coverage.  The next 

section presents the findings resulting from the processing of these datasets. 

 

Table 3.  Final Dataset for Composite Reflectivity Calculations. 

 

 

Table 4.  Final Dataset for Base Reflectivity Calculations. 
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IV. Results and Analysis 

4.1. Flash Origin Radar Characteristics 

Determining the characteristic traits of lightning flash origin points is approached 

from two different ways.  The first is to look at the composite reflectivity signature of the 

LDAR flash origin points with a focus on the requirements for Air Force weather 

personnel to make decisions about the issuance, or cancellation, of lightning warnings.  

The second strategy involves focusing on the 3D radar reflectivity environment around 

these lightning flash origins.  Using the results from this 3D reflectivity analysis, better 

insight into the radar characteristics of lightning flash origins are possible.  An 

understanding of these flash origin radar traits may facilitate making aircrew members 

more aware of the expected lightning threat area when flying near thunderstorms. 

4.1.1. Composite Reflectivity.  Gremillion and Orville (1999), and Hoffert and 

Pearce (1996), suggest that lightning flash origin points are normally located above the 

main reflectivity core or hail shaft.  The mean composite reflectivity of these lightning 

flash origins should, in theory, be fairly high.  Therefore, we would expect to find that 

most flash origins are either found within the 40-dBZ composite reflectivity return, or, at 

the least, the should be very close to the composite reflectivity core—depending upon the 

threshold used to define the reflectivity core (recall that Hoffert and Pearce used 30 dBZ). 

For all of the composite reflectivity results discussed herein, 19,623 lightning 

flashes—consisting of more than 1.8 million LDAR data points—were merged with 2D 

composite radar reflectivity data.  The mean composite radar reflectivity factor of the 

flash origin points is 45.8 dBZ.  Figure 8 shows the cumulative distribution function 
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(CDF) for the composite reflectivity of the lightning origin points.  The CDF presents the 

data in a way that makes it easy to determine the meaning of percentiles.  For example, it 

is apparent that more than 80% of all flash origin points had a composite reflectivity of 

greater than 40 dBZ, and 95% of the origin point have a composite reflectivity of more 

than 30 dBZ—the lower threshold suggested by Hoffert and Pearce (1996).  About 40% 

of the flash origin points have a composite reflectivity greater than 50-dBZ. 

 
 

 

Figure 8.  CDF of Origin Composite Reflectivity.  The cumulative probability of composite radar 
reflectivity factor (dBZ) for the 19,623 flash origin points is shown here.  Examiniation shows that 95% of 
all flash origins have a composite reflectivity of greater than 30 dBZ.  90% of all flash origin reflectivities 

are greater than 35 dBZ, and 80% of the origin points have a reflectivity of greater than 40 dBZ. 
 

For the flash origin points with a composite reflectivity of less than 40 dBZ, just 

how far are they from the nearest edge of the nearest 40-dBZ echo?  Or, for points within 

the 40-dBZ echo, how far is it to the nearest return that is less than 40 dBZ?  The data 

verify that, indeed, most of the lightning flashes do originate either within, or very close 

to, the radar reflectivity cores.  Figure 9 is the CDF for the horizontal distance—since 

we’re only looking at 2D, planar, radar composites—from the flash origin point to the 
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edge of the radar echo that marks the 40-dBZ threshold.  For points within the composite 

reflectivity core, the distance (in kilometers) is indicated as a negative distance, measured 

to the nearest composite reflectivity value between 30 – 39 dBZ.  The mean horizontal 

distance to the edge of the reflectivity core for this dataset is –2.55 km. 

 

 

Figure 9.  CDF of Origin Horizontal Distance from 40-dBZ Echo.  This plot validates that 80% of the 
flash origin points were indeed within the 40-dBZ echo.  90% of all flash origins are either within the 40-
dBZ reflectivity core, or are less than 1 km from the outside of the 40-dBZ threshold.  In fact, 95% of all 

flash origin points are within about 3 km (about 1.6 NM) of the of this 40-dBZ echo. 
 

As is expected after analyzing the distribution of flash origin composite 

reflectivity, the horizontal distance CDF verifies that around 80% of the flash origin 

points were inside the radar reflectivity core.  It is also evident that there is a good 

agreement between the 40-dBZ threshold and lightning origin locations—with 95% of all 

origins either within, or no more than 3 km outside of, the composite reflectivity core.  

This suggests that there may be a potential to use the 40-dBZ line as a critical threshold 

for determining a rule-of-thumb for lightning warning issuance, or cancellation, criteria.  
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It is clear that lightning flashes do indeed appear to originate in the vicinity of composite 

radar reflectivity cores, but what about the actual reflectivity of the flash origin points? 

4.1.2. Base Reflectivity.  As detailed in the previous chapter, the dataset for the 

base reflectivity analysis is much smaller due to radar volume processing issues and 

corruption of reflectivity from bad data values in the interpolated radar volumes.  8,515 

lightning flashes—made up of 839,204 LDAR data points—were examined to determine 

the base reflectivity values and distances from radar reflectivity cores.  The mean base 

radar reflectivity factor for the flash origin points is 33.5 dBZ—which is significantly less 

than the mean composite reflectivity of flash origins of 45.8 dBZ.  Figure 10 shows the 

CDF for the base reflectivity results.  Whereas 90% of the flash origin composite 

reflectivity values were greater than 30 dBZ, for base reflectivity, 90% of the flashes 

exceed only 20 dBZ—which would correspond to the outermost edge of the green 

reflectivity displayed by the C-17 radar.   

Recall that the composite reflectivity data suggested that the lightning origin 

points are normally located within the reflectivity core.  The base reflectivity data 

indicates that more often these flash origin points are either within the top portion of the 

radar reflectivity core, or nearly directly above the reflectivity cores.  This is further 

supported by the fact that Boccippio et al. (2001) found that the majority of LDAR data 

points tend to be detected at around 9 km (near 30 kft) where one would be expected to 

find lower base reflectivity values. 

 

43 



 

 

Figure 10.  CDF of Flash Origin Base Reflectivity.  The 8,515 flashes considered for base reflectivity 
indicate that about 90% of all flash origin points have a base (3D) radar reflectivity factor of greater than 
about 20 dBZ—this would correspond approximately to the outer edge of the C-17’s radar display.  Only 

about 25 – 30% of all flash orgin points actually were initiated within the 40-dBZ reflectivity core. 
 

For the C-17 pilot to get better feeling of just where these flashes originate with 

respect to the radar reflectivity cores, the 3D distance from each flash origin point to the 

edge of the nearest 40-dBZ base reflectivity echo was calculated.  The mean distance 

from the flash origin to the reflectivity core is +0.8 km (i.e. outside the 40-dBZ core).  

Figure 11 displays the CDF for flash origin 3D distance from the core echo.  95% of 

flashes originated within 6km (about 3.2 NM) of the radar reflectivity cores.  When 

combined with information about the extent that flashes tend to travel horizontally from 

the flash origin, this data could potentially provide insight into thunderstorm avoidance 

criteria based upon the aircraft’s distance from significant radar echoes.  Maximum 

lightning flash distances from the origin were also computed during the processing of the 

flash origin data, and will now be discussed. 
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Figure 11.  CDF of Origin Distance from 40-dBZ Echo.  90% of the 8,515 flash origins examined were 
located within about 4 km (around 2 NM) of the 40-dBZ radar reflectivity core.  The data verifies that 

about 25% of the flash origins are actually within the 40-dBZ echo.  95% of the flash origin points are less 
than about 6 km (3.2 NM) from the nearest 40-dBZ echo.  (Note: all distances are actual 3D distance, not 

simply horizontal distance. 
 

4.2. Overall Flash Distances 

Hundreds of lightning flashes were plotted over composite reflectivity displays 

and vertical radar cross-sections and visually inspected.  It became evident that most of 

the lightning flashes did tend to originate near, and normally above, radar reflectivity 

cores (see Figure 12).  Another interesting feature that stood out was that many flashes 

that branch out a significant horizontal distance from the flash origin, often times tend to 

almost follow the radar reflectivity contours.  With this empirical trend in mind, it 

seemed fitting to try to encapsulate some basic information about the horizontal extent 

that lightning flashes travel, not only from the source point, but also from the radar 

reflectivity cores.  A much more thorough survey of this type of data using the entire 

LDAR dataset at AFIT is currently being completed by Captain David Vollmer. 
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Figure 12.  Vertical and Horizontal Lightning Flash/Composite Reflectivity Image.  The top panel is a 
vertical composite reflectivity image (using the maximum reflectivity in the y-direction to determine the 
composite reflectivity for each [x , z] grid location) with data points from a single lightning flash plotted.  

The bottom panel is a planar view of composite reflectivity for the same radar volume with the same 
lightning flash plotted.  The large white plus sign in each image indicates the position of the origin of the 

flash.  Note that this origin is within the 40-dBZ echo on the horizontal view, but is above the 40-dBZ core 
in the vertical image. 

 
 

4.2.1. Distance from Flash Origin.  For the basic investigation into how far 

lightning flashes travel horizontally, the composite reflectivity dataset was used.  It must 

be stated that since the criterion used to process the dataset called for only using flashes 

whose entire range of points fell wholly within the bounds radar volume, it is possible 

that flashes that were more expansive were unintentionally excluded from this analysis.  

Again, refer to Captain Vollmer’s thesis for a more detailed analysis of flash distance 

limits. 
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For each LDAR data point in a lightning flash, the horizontal distance between 

the point and the flash origin was computed, and the maximum distance for the flash 

recorded.  Certainly, the actual horizontal breadth of the flashes is much broader than 

what is presented here; this analysis simply takes the maximum horizontal distance from 

origin to extreme point—it is entirely possible that the actual flash extent is about double 

the distances given here.  The CDF of the results of this simple analysis is shown in 

Figure 13.  The mean maximum flash distance from the flash origin point is only 7.2 km 

(about 4 NM), and 90% of the flashes had a maximum horizontal extent of less than 16 

km (or 8.6 NM ).  Indeed, 95% of the flashes in this dataset had a horizontal limit of 

about 19 km (10.4 NM), and 99% were less than 30 km (about 16.1 NM).  The maximum 

flash distance in these nearly 20,000 flashes was about 46 km (25 NM). 

4.2.2. Distance from 40-dBZ Line.  As mentioned earlier, a subjective analysis 

carried out while watching animated plots of hundreds of lightning flashes indicated that 

there seemed to be a trend for the main part of a flash to, in general, follow the areas of 

high reflectivity.  In order to investigate this, the base reflectivity dataset was analyzed to 

determine the maximum distance from any point in the flash to the nearest radar 

reflectivity core.  Again, the 40-dBZ threshold—inspired by the work of Gremillion and 

Orville (1999), and made a prudent choice because of the request by the C-17 SPO—is 

used to represent the radar reflectivity core for distance determinations.  The distance 

here is the point-to-point 3D distance, instead of the horizontal distances in the previous 

section. 
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Figure 13.  CDF of Maximum Flash Distance from Origin.  This shows the CDF for the maximum 

horizontal distance from the flash origin point to the furthest LDAR data point in a lightning flash.  90% of 
the 19,623 flashes traveled less than about 16 km (8.6 NM) horizontally from the origin point.  95% travel 

less than around 19 km, and 99% traveled less than 30 km (16.1 NM) from the flash origin. 
 

 

Figure 14 is the CDF for the maximum flash distance from the 40-dBZ echo.  The 

distances are much less than those found for the overall flash distance.  The mean 

distance from the core echo was 4.7 km (2.5 NM).  In contrast to the maximum 

horizontal distance from the flash origin, where it was found that 99% of all flashes 

traveled less than about 30 km, the 99th percentile for the flash distance from the 

reflectivity core is only 21 km (11 NM).   

4.3. Regime Analysis 

The results presented thus far are based upon an analysis of the data for all ten 

case study days.  The composite and base reflectivity data was also analyzed based upon 

the weather regime: synoptic or airmass.  An analysis of the flash origin radar 
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Figure 14.  CDF of Maximum Flash Distance from 40-dBZ Echo.  This shows the maximum 3D 
distance that the furthest point from the flash origin traveled from the edge of the 40-dBZ echo.  90% of the 

8,515 flashes had a maximum distance from the reflectivity core of less than 9 km (~5 NM), while 95% 
stayed within about 11 km (6 NM) of the nearest 40-dBZ return.  99% of all flashes had were within about 

21 km (11.4 NM).  
 

characteristics indicates that none of them displays an operationally significant change 

between the two regime types.  The flash distances, however, do show a change that 

could potentially impact recommendations for in-flight lightning avoidance. 

4.3.1. Flash Origin Characteristics.  The mean value of flash origin base 

reflectivity is about 3-dBZ higher for the airmass days than for the synoptic days.  There 

is, however, almost no difference at all in values of the 90th and 95th percentiles for base 

reflectivity.  For composite reflectivity, the mean reflectivity of the flash origins is less 

than 1 dBZ higher for the synoptic days than for the airmass days.  95% of all flash 

origins have a composite reflectivity greater than 27 dBZ for the airmass days, versus 33 

dBZ for the synoptic days.  A similar difference exists for the 90th percentile, with values 

of composite reflectivity greater than 33 dBZ for the airmass and 37 dBZ for the synoptic 
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days.  To understand the possible operational impact of these variations, the flash origin 

distance data must also be considered.  

An analysis of the distribution of flash origin distances from core radar echoes 

indicates that the mean distance inside the 40-dBZ composite reflectivity echoes was 

slightly greater in the synoptic cases.  But, 90% of the flashes originated either inside the 

composite reflectivity core or within about 1 km of the edge of the core echo in both 

regimes; and 95% originated within 3 km of the 40-dBZ reflectivity core in both regimes, 

as well.  The continuity in the spatial relationship between the flash origins and the radar 

reflectivity cores effectively minimizes any impact that an increase in the mean flash 

origin composite reflectivity might have on lightning warning guidance. 

4.3.2. Flash Distances.  A significant difference exists in the distribution of 

maximum flash distance from the flash origin, and a modest difference in maximum flash 

distance from the 40-dBZ echos, for the two weather regimes.  A comparison of the 

CDF’s of maximum flash distance from the flash origin is shown in Figure 15.  The mean 

maximum flash horizontal distance for the synoptic days was 8.2 km (4.4 NM), and 6.4 

km (about 3.5 NM) for the airmass days.  The 90th and 95th percentiles, however, show a 

more pronounced difference.  90% of flashes on airmass days have a horizontal extent of 

less than 13 km, compared to 18 km on synoptic days.  95% of flashes on the airmass 

days had a maximum flash horizontal distance from the flash origin of less than 17 km; 

under synoptic conditions, this 95th percentile extends out to 22 km.  The same trend 

toward greater flash extent with synoptic forcing was found for maximum distance from 

the radar echo cores, although the differences observed were less than about 2 km 

between the two regimes. 
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Figure 15.  CDF Comparison of Maximum Flash Distance from Origin.  This graph shows that the 
90% of all flashes traveled less than 13 km for the airmass days and 18 km for the synoptic days.  
Similarly, 95% traveled less than 17 km under airmass conditions and 22 km on synoptic days. 
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V. Conclusion 

5.1. Conclusions 

The goal of this research was to examine the possibility of establishing guidance 

for aircraft lightning avoidance and lightning warning criteria based upon the radar 

reflectivity signatures of lightning flash origins.  Based upon the results of this 

investigation, it does appear feasible to come up with such guidance—both for in-flight 

thunderstorm avoidance and cloud-to-ground lightning safety criteria—that uses the radar 

reflectivity characteristics of lightning source points as basis for threat area identification.  

The use of the 40-dBZ threshold—which was selected primarily because it is the lower 

limit of the maximum reflectivity displayed by the C-17’s radar system—proved to be an 

adequate value for the analysis of flash origin spatial distribution. 

It was shown that 95% of the lightning flashes studied originated within 3 km of a 

40-dBZ composite reflectivity echo, with 80% of the flashes actually originating within 

the 40-dBZ composite reflectivity echoes.  The 40-dBZ composite reflectivity line could 

be used as a trigger for when to issue, or cancel, weather warnings for lightning at Air 

Force installations.  For example, issue a warning once the 40-dBZ line of an active 

thunderstorm—as determined by National Lightning Detection Network (NLDN) 

indications of CG lightning activity—comes within 7 NM of the warning area (assuming 

that the 5 NM radius is used).  This could be especially important for Operational 

Weather Squadron (OWS) forecasters responsible for issuing warnings for all bases 

within their area. 
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When these results are combined with the findings of Captain Todd McNamara’s 

study of CG lightning distances from flash origin points, the adequateness of the current 

five nautical mile warning radius may warrant further scrutiny by Air Force weather and 

safety policy makers.  In addition, the information that can be obtained when lightning 

and radar data are combined emphasizes the requirement for better-integrated lightning 

observing systems.  This is especially true after the advent of the OWS, where warning 

responsibility rests with someone outside the local area.  The task of keeping track of 

multiple bases and knowing when to issue/cancel lightning warnings would be eased 

greatly by integration of NLDN data with radar displays, and preferably with 3D 

lightning mapping systems at each base to provide a total lightning picture. 

Merging the results of this project with Captain Dave Vollmer’s investigation into 

flash distances by altitude and atmospheric temperature, could suggest an in-flight 

lightning avoidance rule-of-thumb that is based upon the radar echoes displayed by 

onboard radars.  The flash distance results derived in this study—which are, admittedly, 

less exhaustive than the forthcoming results from Captain Vollmer’s research—suggest 

that 95% of lightning flashes extend less than 19 km (10.25 NM), and 99% traveled less 

than 30 km (16.1 NM), horizontally from the flash origin.  The base reflectivity analysis 

of more than 8,500 flash origin points revealed that 95% of the flashes originated within 

6 km (or 3.2 NM) of the nearest 40-dBZ base reflectivity radar echo.  Using the 99th 

percentile of observed flash distance (30 km), for optimum safety concern, suggests a 

safe avoidance distance of about 36 km (just under 20 NM) from the nearest 40-dBZ 

radar return. 
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The data also suggest that a less restrictive threshold could be considered based 

upon the observation that 99% of all flashes traveled no further than 21 km 3D distance 

(about 11.3 NM) from the nearest 40-dBZ echo.  The results from this study show great 

promise for coming up with practical guidance for lightning safety based upon radar 

echoes for both weather personnel and aircrew members.  There is one main limiting 

factor that will be discussed in the next section, however, that would—at least at this 

time—most likely preclude widespread guidance being developed based upon these 

findings. 

5.2. Recommendations for Future Work 

The fact that all the data used for this research came from the KSC area, may 

suggest that the potential guidance stemming from this research might be valid only for 

flight and ground operations near the KSC.  Perhaps the results might be representative of 

thunderstorms in the southeast United States, but what about the rest of the CONUS?  To 

address the limitations on the applicability of the findings in this study, 3D lightning data 

from different geographical regions should be studied in the same manner. 

Until recently, the only other 3D lightning mapping system in the United States 

was the system owned by New Mexico Tech for research purposes.  There is, however, a 

new system, similar to LDAR, being operated in the Dallas, Texas area on an 

experimental basis.  The possibility of obtaining data from this system, and merging it 

with WSR-88D coverage of the Dallas area, could provide an opportunity to validate, or 

perhaps to identify a regional bias in, the findings of this study.  The Dallas data may also 

present the opportunity to study different types of thunderstorms, such as supercells and 

mesoscale convective complexes.
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Appendix A.  IDL Flash Grouping Program 

The flash-grouping computer code, written for the Interactive Data Language 

(IDL) environment, that was developed using the NASA flash-grouping algorithm as a 

blueprint is presented in this appendix.  This code is included to allow an examination of 

the logic used to group individual LDAR data points into lightning flashes.  The code 

accepts the file name of the raw LDAR data file to be processed and uses the same file 

name to save the resulting flash-grouped LDAR file.  The raw LDAR data is assumed to 

be in the standard ASCII text format used by NASA.  The comment lines, marked by a 

semicolon, explain what each section of code is doing. 

 
 
 
 
 
 
;***********************************************************************
; Creates a Const structure to hold constants that can be passed from
; function to funcion by only passing one arguement
;***********************************************************************

FUNCTION Const
C = {C, xcal:-1318L, $ ; xpos of calibration data

ycal:-1609L, $ ; ypos of calibration data
zcal:450L, $ ; zpos of calibration data
dx:200L, $ ; look +/- 200m from xcal
dy:200L, $ ; look +/- 200m from ycal
dz:450L, $ ; look +/- 450m from zcal
max_flash_time:3.0D, $ ; max 3 sec from start/stop of flash
max_flash_delay:0.5D, $; max time lag between points in flash
max_branch_delay:0.03D, $; max delay between points in a branch
Pi:3.14159265359, $
deg_to_rad:3.14159265359/180.0, $ ; degree to radain conversion
angle_error:1.0D, $ ; directly from NASA code
max_dis_f:5000.0D, $ ; point must be within 5km to be in flash
block_size:500L } ; examine 500 LDAR data lines at a time

RETURN, C
END
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;***********************************************************************
; data_line Structure definition. LDAR data files will be read directly
; into this structure. (Note: ms, x, y, z are LONG integers)
;***********************************************************************

FUNCTION data_line
DL = {DL, day:0, $

hr:0, $
min:0, $
sec:0, $
ms:0L, $
x:0L, $
y:0L, $
z:0L }

RETURN, DL
END

;***********************************************************************
; point_struct definition. This structure will hold the seconds (time),
; flash number (fnum), branch number (bnum), point number (index), line
; number of the parent point (parent), and line number (line_num) of
; each non_calibration data point found.
;***********************************************************************

FUNCTION point_struct
p = {p, time:0.0D, $

fnum:0L, $
bnum:0L, $
index:0L, $
parent:0L, $
line_num:0L}

Return, p
END

;***********************************************************************
; flash_struct definition. Temporary structure that will hold the start
; time (start_time) in seconds, end time (end_time) in seconds, number
; of points (num_points), number of branches (num_branches), and the
; line number of the first point (first_point) in a flash.
;***********************************************************************

FUNCTION flash_struct
FL = {FL, start_time:0.0D, $

end_time:0.0D, $
num_points:0L, $
num_branches:0L, $
first_point:0L }

RETURN, FL
END
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;***********************************************************************
; branch_struct definition. This temporary structure will hold the
; start time (start_time) in seconds, end time (end_time) in seconds,
; number of points (num_points), line number of the first (first) point,
; line number of the last identified point (last), line number of the
; closest point (parent) in the flash to the first point, flash number
; (fnum), and branch number (bnum) for an active branch.
;***********************************************************************

FUNCTION branch_struct
BR = {BR, start_time:0.0D, $

end_time:0.0D, $
num_points:0L, $
first:0L, $
last:0L, $
parent:0L, $
fnum:0L, $
bnum:0L }

RETURN, BR
END

;***********************************************************************
; Calculates the 3-Dimensional distance between two points. This
; function accepts two point_stuct type arguements p1 & p2 and uses
; pythagoream's rule to determine the 3D distance.
;***********************************************************************

FUNCTION dist_between_2_points, p1, p2
RETURN, sqrt(((p1.x*1.0D) - (p2.x*1.0D))^2 + $

((p1.y*1.0D) - (p2.y*1.0D))^2 + $
((p1.z*1.0D) - (p2.z*1.0D))^2)

END

;***********************************************************************
; Calculates the 2-Dimensional horizontal distance between two points.
; This function accepts two point_stuct type arguements p1 & p2 and uses
; pythagoream's rule to determine the 2D horizontal distance.
;***********************************************************************

FUNCTION h_dist_between_2_points, p1, p2
RETURN, sqrt(((p1.x*1.0D) - (p2.x*1.0D))^2 + $

((p1.y*1.0D) - (p2.y*1.0D))^2)
END

;***********************************************************************
; range_error was directly taken from the NASA flash grouping algorithm.
;
; This function expects a floating point number that represents the
; horizontal distance (in meters) from the LDAR site to the LDAR event.
; The range error is determined to be 12% of the range (i.e. if an event
; is 50km from the LDAR site, the range error is 6km).
;***********************************************************************

FUNCTION range_error, r
return, (r * 12.0D/100.0D)

END
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;***********************************************************************
; max_dis_b was directly taken from the NASA flash grouping algorithm.
;
; The function expects a floating point number that represents the
; horizontal distance (in meters) from the LDAR site to the LDAR event.
;
; If a data point is within 40km of the LDAR site, a max horizontal
; distance of 1km is used to determine if a point is within branch
; bounds. Outside of 40km, this distance increases from 1km by a factor
; r/40km.
;***********************************************************************

FUNCTION max_dis_b, r
If (r LT 40000.0) THEN return, 1000.0d ELSE return, r/40.0d

END

;***********************************************************************
; is_point_in_flash_bounds is a modified version of the function in the
; NASA flash grouping algorithm by the same name.
;
; This function is the key to determining whether or not a point is part
; of a flash based upon spatial constraints. The variables passed to
; the function are the point to be checked (p1 : sub_d[checki]] from the
; main program), the group of data being examined (data : sub_d from the
; main program), the group of points being examined (p : sub_p from the
; main program), the flash number of the origin of the flash being
; examined (fnum : sub_p[init].fnum from the main program), the origin
; data point (origin...has location [0,0,0]), and the constant structure
; C.
;
; To determine if a point is within flash bounds, the radius defined in
; the constant structure (C) is used (Default value of 5000km could be
; modified prior to compiling and running the program. This radius is
; stored in the C.max_dist_f constant.
;
; An ellipse with a minor axis perpendicular to the radial between the
; LDAR site and the the point being considered and a major axis along
; that radial is used to determine whether or not a point is within the
; spatial bounds to be grouped in with a flash. The minor axis is a
; function of C.max_dist_f plus the azimuthal error of LDAR. The major
; axis is also a function of C.max_dist_f but is mainly influenced by
; the range error of the LDAR system.
;
; The function returns a 1 if the point is within flash bounds and a 0
; if the point is not in flash bounds.
;***********************************************************************

FUNCTION is_point_in_flash_bounds, p1, data, p, fnum, origin, C

; locate all points in the flash
find = where(p.fnum EQ fnum, cnt)

; p2 is an array of all data points in the current flash
p2=data[find]

; theta1 indicates the angle from the LDAR point to the point p1
theta1 = atan (p1.y , p1.x )

; loop through all points (if necessary)
for j = 0L , cnt-1L DO Begin

; make sure there is no divide by zero problem with finding theta2
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; by adding 1m to p1.x if x's are equal
if (p2[j].x EQ p1.x) then p1.x = p1.x + 1.0

; theta2 is the angle between the current flash point and point p1
theta2 = atan ((p2[j].y - p1.y) , (p2[j].x - p1.x))

; alpha is the differnce in the two angles, and represents the angle
; betweem a line connecting the LDAR site to point p1 and point p2

alpha = theta1 - theta2

; determine the distance to point p1 from the LDAR site (2D)
range = h_dist_between_2_points ( origin , p1 )

; calculate distance between p1 and the current point in the flash (2D)
dis = h_dist_between_2_points ( p1 , p2[j] )

; a is the minor axis of the ellipse around p1 and represents the
; azimuthal error of the LDAR system

a = C.max_dis_f + C.angle_error * C.deg_to_rad * range

; b is the major axis of the ellipse around p1 and represents the range
; error of the LDAR system

b = C.max_dis_f + range_error( range )

; y is the component of the distance between p1 and p2 that is parallel
; to the radial from the LDAR site to point p1

y = dis * cos ( alpha )

; if y is greater than the major axis of the ellipse there is no way
; that this point is part of the flash...also avoids an imaginary
; number when calculating x...

if (abs(y) LE abs(b)) then Begin

; solve the equation of the ellipse for x (all other variables are known
x = a * sqrt ( 1. - y*y/(b*b) )

; determine the vector distance (in ellipse coordinates) to the point
; x, y on the ellipse...

dis_allowed = sqrt ( x*x + y*y )

; If the distance to p2 is less than dis_allowed, p2 must fall inside
; the ellipse and is included in the flash...return 1 to the main
; program to indicate success. This prevents the loop from continuing
; once the point has been determined to belong with the flash...

if ( dis LE dis_allowed ) Then return, 1

endif; end of If (abs(y) LE abs(b))...

endfor

; If we've looked at all points in the flash and none are close enough
; tell main program this point is not part of flash...

return, 0
END
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;***********************************************************************
; is_point_in_branch_bounds is a modified version of the function in the
; NASA flash grouping algorithm by the same name.
;
; This function determines whether or not a point is part of a branch
; based upon spatial constraints. The variables passed to the function
; are the point to be checked (p1 : sub_d[checki]] from the main
; program), the branch number to check (bn : bnum from the main
; program), the group of data being examined (data : sub_d from the main
; program), the temporary branch structure array (b), and the origin
; data point (origin...has location [0,0,0])
;
; The function returns a 1 if the point is within branch bounds and a 0
; if the point is not in branch bounds.
;***********************************************************************

FUNCTION is_point_in_branch_bounds, p1, bn, data, b, origin

; determine the 2D range from the LDAR site to point p1
range = h_dist_between_2_points ( origin , p1 )

; Check the distance between p1 and the last point in the current branch
; and compare the result with the result of the call to max_dis_b for
; the range that p1 is from the LDAR site...

if (h_dist_between_2_points(p1,data[b[bn].last]) LE $
max_dis_b(range)) Then return, 1 else return, 0

END

;***********************************************************************
; find_closest_point_in_flash is called if a point is found to be within
; flash bounds, but is not part of any branch, and is therefore the
; first point in a new branch. This function determines which point in
; the flash is closest and that point will be the "parent" of this new
; branch.
;
; This function is passed both the data structure and the point
; structure of the point to be checked (d1 : sub_d[check[i]]
; from the main program and pt1 : sub_p[check[i]] from the main
; program), as well as the data and point sets being examined (p : sub_p
; from the main program and data : sub_d from the main program).
;
; The 3-Dimensional distance between all the points in the flash and pt1
; are calculated and a pointer to the closest point is returned.
;***********************************************************************

FUNCTION find_closest_point_in_flash, d1, pt1, p, data

; Find all points with the same fnum...but don't include point pt1...
j = where((p.fnum EQ pt1.fnum) AND (p.time NE pt1.time))

; dist will be a vector of distances calculated between all points & pt1
dist = dist_between_2_points(data[j],d1)

; find the shortest distance
shortest = min(dist)

; get a pointer to the element that is closest...
index = where(dist EQ shortest, count)

; if there are more than one point with same distance...return the first
if (count EQ 1) then return, j[index] else return, j[index[0]]

END
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;***********************************************************************
; Summary of Revisions:
; Version Date Changes
; ========================================================
; 1.0 13 Jul 01 Started working on it...
; 1.1 19 Jul 01 Modified with dialog_pickfile()
; 1.2 20 Jul 01 Started using Structures...
; 1.3 28 Aug 01 Bite-Sized Chunks added
; 1.4 04 Sep 01 Finished coding...it works!!!!!!!!
; 1.5 24 Oct 01 Completed Documenting Code
;***********************************************************************
; Program flash_group.pro
;
; Date: 24 Oct 2001
;
; Version: 1.5
;
; Written By: 1Lt Lee A. Nelson
;
; Purpose: flash_group reads in an ASCII text file from a user-specified
; location (either at the command prompt on the program call, or in a
; script file, or by use of a dialog pickfile window if no filename is
; declared when the program is called).
;
; The logic for this code comes from the LDAR flash grouping C program
; used by NASA. Very slight modifications were necessary in the logic
; of the program. The entire file interface is different from the NASA
; algorithm.
;
; The output file are saved in ASCII text format using the identical
; file name as the LDAR input file. As such, the location that a file
; is saved to is very crucial. As with our LDAR input files, the naming
; convention is:
;
; ldarYYYYMMDD.txt
;
; YYYY - Year
; MM - 2 Digit Month
; DD - 2 Digit Day
;
; The data in the output file includes all data in the original LDAR
; text files: Julian Date, Hour, Minute, Second, Microsecond, X, Y, and
; Z locations, plus the following columns of data:
;
; Flash Number: (note a flash number of -1 indicates that this point
; was either a lone point or there was only one point
; with flash bounds, and no two-point flashes are
; considered to be valid events)
;
; Branch Number: (note: the origin of a flash is branch number 0)
;
; Point Number (or index): (indicates position within a branch...flash
; origin is Point 0)
;
; Parent: (the first point in a branch will have a parent, this is the
; point in the flash that is closest to the first point in a
; branch...most points will not have a parent...in general only
; points with a point number of 1 will have a valid number in
; the parent column)
;
; Line Number: (a unique index number for the data line, useful as a
; pointer and a sub-reference when only parts of a data
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; set is being examined)
;
; The IDL Format statement to read these output files is:
;
; format = '(i3,1x,i2,1x,i2,1x,i2,1x,i6,1x,i9,1x,i9,1x,i9,1x,i7' + $
; ',1x,i7,1x,i7,1x,i7,1x,i7)'
;***********************************************************************

pro flash_group, fname = fname

close,/all ; Ensure all files are closed

C=Const() ; call Const() function to define constants...

inpath = '/home/fujita12/ldar/data/' ; modify if necessary
outpath = '/home/fujita7/nelson/flash/' ; modify if necessary

; Note: the outfile has the identical name as the original LDAR file...
infile = inpath+fname
outfile = outpath+fname

print, infile ; show name of input file on screen

n=0L ; initialize the line count holder

clock = systime(1) ; initialize the clock to determine run time

openr, input, infile, /get_lun

while not (eof(input)) do begin ; loop to count lines of data
readf, input, s
n = n + 1L

endwhile

point_lun, input, 0 ; reset pointer to first line of file

Line = data_line() ; Call to data_line() creates a blank structure

data = replicate(Line,n) ; make an array of structures to hold data

readf, input, data ; fill the array from the LDAR file

close, input ; close the LDAR file
free_lun, input ; free the pointer

; Filter out Calibration Data by creating an array of pointers to the
; data that is outside of the calibration "box"

filter = where(((data.x LE (c.xcal-c.dx)) OR $
(data.x GE (c.xcal+c.dx))) OR $

((data.y LE (c.ycal-c.dy)) OR $
(data.y GE (c.ycal+c.dy))) OR $

((data.z LE (c.zcal-c.dz)) OR $
(data.z GE (c.zcal+c.dz))), count)

; if there is calibration data in the file...ignore it...if there is
; only calibration data in the file...reset the data array to one blank
; structure

if (count NE 0) then data = data[filter] else data = data_line()

; there may be some "roll-over" in the data, assume the first line is
; on the first day of data and assign this to the variable date...

date = data[0].day
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; This filters out any data with date/time data that is not correct...
; this came about because some corrupted data was found that had bad
; date data and garbage positional data...

keep = where(((data.day EQ date) OR (data.day EQ date+1) AND $
(data.hr LE 23) AND (data.min LE 59) AND $
(data.sec LE 59) ), count)

; keep any "valid" data...if none...reset data array to one blank data
; structure

if (count NE 0) then data = data[keep] else data = data_line()

; reset the counter to the data elements left after filtering
n = n_elements(data)

; call the point_struct() function to define a point structure then
; make n copies of the structure to hold the information for each
; point in the data array

p = point_struct()
p = replicate(p,n)

; initialize the line_num elements of p
p.line_num = lindgen(n)

; convert the time elements of the data array to seconds and store in
; the time element of p

p.time = ((data.day - data[0].day)*86400.0D) + (data.hr*3600.0D) + $
(data.min*60.0D) + (data.sec) + (data.ms/10.0D^6)

; define the origin...(note x,y,z = 0)
origin = data_line()

; initialze the number of flashes and number of branches...
num_flashes = 0L
num_branches = 0L

; low and hi will keep track of which elements of the data and p arrays
; are being checked...

low = 0L
hi = C.block_size - 1L

; if there are more elements in the data and p arrays than C.block_size
; make a sub_d and sub_p array that holds C.block_size elements. If it
; is a small data set with C.block_size elements or less, then make the
; sub_d and sub_p arrays only hold n elements. The critical_t variable
; indicates the time that will trigger the need to read further elements
; into the sub_d and sub_p arrays. This critical time is determined by
; subtracting C.max_flash_time seconds from the last element in the sub
; array. If we try to examine any point as the possible origin of a new
; flash that is within C.max_flash_time of the end of the block, we need
; to get more points to ensure that all points are being considered that
; could be part of the flash...

if (n GT C.block_size) then begin
sub_d = data[low:hi] ; subset of data to be checked
sub_p = p[low:hi] ; subset of p to be checked

; critical_t will trigger the process of getting another block of data
critical_t = sub_p[hi].time - C.max_flash_time

; prepare for the next block of data to be checked...reset low and hi
low = low + C.block_size
hi = hi + C.block_size

endif Else Begin ; if this is a small data set...only one block
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sub_d = data
sub_p = p
hi = n ; this will ensure no more blocks of data are checked
critical_t = sub_p[hi-1L].time - C.max_flash_time

endelse

; stop is a flase flag that allows entry into the while loop, exiting
; the loop is handled by a break statement once conditions are met...

stop = 0

; this loop repeats until there are no more points to examine...
while (stop NE 1) DO Begin

; define a blank branch structure (note: this discards any data from
; prior flashes...

b = branch_struct()

; init is a pointer to the first element with a flash number of zero
init = min(where(sub_p.fnum EQ 0, count))

; make sure there is at least one point with a flash number of zero
if (count EQ 0) then Begin ; if there is not...

; if this the last last block of data (i.e. hi = n) then stop the loop
if (hi EQ n) then break $; exits while loop...

; if there are more points...get another block of data...
else begin

; if there are more than C.block_size points left...then
if (hi + C.block_size LT n) then begin

; get the next block of data from low to hi
sub_d = data[low:hi]
sub_p = p[low:hi]

; define the new critical_t
critical_t = p[hi-1L].time - C.max_flash_time

; reset the low and hi pointers for the next block of data
low = low + C.block_size
hi = hi + C.block_size

; or if there are less than C.block_size points left...
endif Else Begin

; get the remainder of points to be checked
sub_d = data[low:n-1L]
sub_p = p[low:n-1L]

; set hi = n to trigger check that no more data left...
hi = n

; set new critical_t
critical_t = p[hi-1L].time - C.max_flash_time

endelse

; now go back to the first statement in the WHILE loop and look again
Continue

endelse
endif ; ends the IF (COUNT EQ 0) statement...
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; If we're near the end of the block (time-wise) and this isn't the last
; block of data to check, filter out the data that has already got a
; flash number, and then add another block of data to what's left in
; sub_d and sub_p...

if ((sub_p[init].time GT critical_t) AND (hi NE n)) THEN Begin

; we'll keep all the points that haven't been assigned a flash number
keep = where(sub_p.fnum EQ 0, cnt)
sub_p = sub_p[keep]
sub_d = sub_d[keep]

; if there are at least C.block_size elements left in data and p...
if (hi + C.block_size LT n) then begin

; append another block from low to hi on to sub_d and sub_p
sub_d = [sub_d,data[low:hi]]
sub_p = [sub_p,p[low:hi]]

; calculate a new critical_t
critical_t = p[hi-1L].time - C.max_flash_time

; reset low and hi for next block of data
low = low + C.block_size
hi = hi + C.block_size

; if there are less than C.block_size points left...
endif Else Begin

; get the rest of the points and append to sub_d and sub_p
sub_d = [sub_d,data[low:n-1L]]
sub_p = [sub_p,p[low:n-1L]]

; set hi = n to trigger flag that this is last block of data
hi = n

; determine new critical_t
critical_t = p[hi-1L].time - C.max_flash_time

endelse

; now, go back to first statement in WHILE loop and start again...
continue

endif

; note: only get here if the all the points within C.max_flash_time
; seconds are included in this block of data, or if this is the last
; part of the data file and no more data can be added to sub_d and
; sub_p

; check is an array of pointers to the elements of sub_p and sub_d that
; are within C.max_flash_time seconds of the time of the point that init
; points to and have no flash number yet assigned...

check = where ( (sub_p.time GT sub_p[init].time) AND $
(sub_p.time LE (sub_p[init].time + C.max_flash_time)) $
AND (sub_p.fnum EQ 0), count)

; if we don't find any points that meet the above criteria...set fnum to
; -1 to indicate not part of a valid flash...

if (count EQ 0) then begin
sub_p[init].fnum = -1L

; use the line_num of the sub_p element to reference the actual data
; in the p array and set fnum to -1 as well
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p[sub_p[init].line_num].fnum = -1L

; if there are points to check...check them
endif ELSE Begin

; initialize a temporary flash structure...
f_temp = flash_struct()
f_temp.first_point = sub_p[init].line_num
f_temp.start_time = sub_p[init].time
f_temp.end_time = f_temp.start_time
f_temp.num_points = f_temp.num_points+1

; initialize the flash number of the init point...
sub_p[init].fnum = num_flashes+1L
p[sub_p[init].line_num].fnum = num_flashes+1L

; initialize a temporary branch structure
b_temp = branch_struct()
b_temp.fnum = num_flashes+1L
b_temp.parent = sub_p[init].line_num ; init is parent...

; recall that count is the number of points in check...that is, the
; number of points with no flash number and within C.max_flash_time
; seconds of init...

for i = 0L, count-1 DO Begin

; check to see if the point is within the proper temporal (within
; C.max_flash_delay seconds of the last point in the flash) and
; spatial window to be considered part of the flash...

if (((sub_p[check[i]].time-f_temp.end_time) LE C.max_flash_delay) $
AND (is_point_in_flash_bounds(sub_d[check[i]],$

sub_d,sub_p,sub_p[init].fnum,origin,C) EQ 1)) $
THEN Begin ; if it is within time and space bounds...

; set flash number in sub_p and p...
sub_p[check[i]].fnum = sub_p[init].fnum
p[sub_p[check[i]].line_num].fnum = sub_p[init].fnum

; set flash end_time to this point's time
f_temp.end_time = sub_p[check[i]].time

; increment the number of points in the flash...
f_temp.num_points = f_temp.num_points+1L

; check to see if this is the first branch in the flash...if it is...
if (f_temp.num_branches EQ 0) then Begin

; initialize the branch information for the first point...
sub_p[check[i]].bnum = 1L
sub_p[check[i]].index = 1L
p[sub_p[check[i]].line_num].bnum = 1L
p[sub_p[check[i]].line_num].index = 1L

; initialize the b_temp information with the info from the current point
b_temp.start_time= sub_p[check[i]].time
b_temp.end_time = b_temp.start_time
b_temp.first = check[i]
b_temp.last = check[i]
b_temp.bnum = 1L
b_temp.num_points = 1L
f_temp.num_branches = 1L
b = [b,b_temp]; add branch to structure
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; note: the parent is the line_num of init...
sub_p[check[i]].parent = b_temp.parent
p[sub_p[check[i]].line_num].parent= b_temp.parent

; if there is already at least one branch in the current flash...
endif else Begin

; found is a flag to stop looping once we find a branch for this point
found = 0

; look through all branches to determine if point is part of a branch
for j = 1L,f_temp.num_branches Do Begin

; if we haven't found a branch...then
if (found EQ 0) Then Begin

; Check if point is within temporal (C.max_branch_delay seconds) and
; spatial bounds of the last point in the current branch

if ((sub_p[check[i]].time - b[j].end_time LE $
C.max_branch_delay) AND (is_point_in_branch_bounds $

(sub_d[check[i]], j, sub_d, b, origin) EQ 1)) $
Then Begin ; if part of this branch

; set end_time of branch...
b[j].end_time = sub_p[check[i]].time

; increment number of points in this branch...
b[j].num_points = b[j].num_points + 1L

; set branch number of point in sub_p and p...
sub_p[check[i]].bnum = j
p[sub_p[check[i]].line_num].bnum = j

; set index number for this point in p and sub_p...
p[sub_p[check[i]].line_num].index = b[j].num_points
sub_p[check[i]].index = b[j].num_points

; set pointer to the last element of the branch to current point...
b[j].last = check[i]

; set flag to stop looping for this point...
found = 1

endif
endif

endfor

; if we didn't find a branch for the point...must be a new branch...
if (found EQ 0) Then Begin

; find the closes point in the flash to this point...
nearest = find_closest_point_in_flash (sub_d[check[i]], $

sub_p[check[i]], sub_p,sub_d)

; create a new brach element...
b_temp = branch_struct()

; parent of new branch is nearest point in the flash...
b_temp.parent = sub_p[nearest].line_num

; assign parent to sub_p and p point as well...
p[sub_p[check[i]].line_num].parent = b_temp.parent
sub_p[check[i]].parent = b_temp.parent
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; assign flash number
b_temp.fnum = sub_p[check[i]].fnum

; initialize first and last of new branch element...
b_temp.first = [check[i]]
b_temp.last = check[i]

; increment number of branches in the flash...
f_temp.num_branches = f_temp.num_branches + 1L

; assign a branch number to the new branch...
b_temp.bnum = f_temp.num_branches

; initialize the start and end time of the new branch...
b_temp.start_time = sub_p[check[i]].time
b_temp.end_time = sub_p[check[i]].time

; set the number of points in the new branch to 1
b_temp.num_points = 1L

; update p and sub_p with branch number & index
p[sub_p[check[i]].line_num].bnum = b_temp.bnum
sub_p[check[i]].bnum = b_temp.bnum
sub_p[check[i]].index = 1L
p[sub_p[check[i]].line_num].index = 1L

; append b_temp to b...
b = [b,b_temp]

endif ; end of IF (found EQ 0)...
endelse

endif

endfor ; end of for loop to check all points...

; note: we get here when we've checked all points

; A flash will only be considered valid if there are more than 2 data
; points in the flash...

If (f_temp.num_points GT 2) THEN Begin ; if a valid flash...

; increment number of flashes...
num_flashes = num_flashes+1L

; complete indicates the percentage of points examined thus far...it
; is echoed to the screen as a visual check for how much progress is
; being made...

complete = ((sub_p[init].line_num*1.0) / $
(n_elements(data)*1.0))*100.0

; show the progress on the screen (flash number, % done, etc...
print, complete, '% flash number: ', num_flashes, $

' index: ', sub_p[init].line_num, ' time :', $
sub_d[init].day, sub_d[init].hr, sub_d[init].min, $
sub_d[init].sec, sub_d[init].ms, $
format = "(f6.2,a16,i8,a8,i8,a7,4i3,i7)"

; if this was not a valid flash (i.e. not more than 2 points in flash)
endif else Begin

; set init point flash number to -1 to indicate not a valid flash...
sub_p[init].fnum = -1L
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p[sub_p[init].line_num].fnum = -1L

; find the points in sub_p that were part of this possible flash...
reset = where(sub_p.fnum EQ num_flashes +1L, count)

if (count NE 0) then Begin

; find the points in p that were part of this possible flash, too...
reset2 = where(p.fnum EQ num_flashes + 1L)

; reset the flash number, parent, and index of each point...
sub_p[reset].fnum = 0L
sub_p[reset].parent = 0L
sub_b[reset].index = 0L
p[reset2].fnum = 0L
p[reset2].parent = 0L
p[reset2].index = 0L

endif
endelse

endelse
END ; end of while loop

; open the output file for writing...
openw, output, outfile, /get_lun

; write the output for each line of data in the data and p arrays...
for i = 0L, n_elements(p) - 1 DO begin

printf, output, data[i].day, data[i].hr, data[i].min, $
data[i].sec, data[i].ms, data[i].x, data[i].y, data[i].z, $
p[i].fnum, p[i].bnum, p[i].index, p[i].parent, $
p[i].line_num, format = "(4i3,i7,3i10,5i8)"

endfor

close, /all ; close all files
free_lun, output ; free the pointer to the output file...

; echo to the screen how many points were not part of a flash...
print, n_elements(where(p.fnum LT 0)), ' item(s) out of ', $

n_elements(p),' were not part of a flash'

; echo to screen how long it took to complete the program...
print, 'It took ', systime(1)-clock, ' seconds to run this...' , $

format = "(a8,f12.1,a23)"

; echo to screen that the program execution is complete...
print, 'done...'

end ; end of Program 
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Appendix B.  Examples of Radar Processing Errors 

Two figures are include in this appendix to graphically show two of the types of 

data problems found when using the SPRINT and CEDRIC software to interpolate 

archive Level II radar reflectivity data to a 3D Cartesian grid.  Figure 16 shows a radar 

volume that was deemed unusable due to the large amount of missing data in the lower 

levels—were we’d expect to find some of the higher reflectivity returns.  There is a 

distinct line that shows that only part of one of the elevation scans was processed, with 

several missing altogether. 

 

 
Figure 16.  Example of an Unusable Radar Volume.  This image shows a radar volume that was 

considered unusable because crucial reflectivity information is missing.  The distinct line of where the 
reflectivity is missing, combined with the fact that much of the lower levels of the radar echoes are missing, 

makes this volume unfit for even composite reflectivity calculations. 
 
 

Figure 17 is an example of a radar volume that was declared to be partially usable.  

This indicates that some of the data is missing, but a subjective analysis indicated that 

enough of the higher reflectivity values are present that would facilitate a composite 
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reflectivity grid being created from the valid data in the volume.  In the volume shown, 

there is a large slice of the mid levels of the storm missing, but it is clear that most of the 

higher reflectivity values are included in the available data.  Radar volumes such as this 

were used for composite reflectivity calculations—and the distance calculations based 

upon composite reflectivity grids.  These partially usable volumes were not used, 

however, for any base reflectivity computations. 

 

 
Figure 17.  Example of a Partially Usable Radar Volume.  This image shows a radar volume that was 

considered partially usable.  A rather large slice of the volume is missing, however, it lies above the region 
of highest reflectivity, making it very likely that a composite reflecivity grid created by a complete volume 

and one created from this 3D grid would be essentially equivalent. 

71 



 

 

Bibliography 

Bauman, W. H. 1998:  Safety Investigation Board Briefing.  Electronic Slide Show 34  
     Slides, 7 October 1998. 

Boccippio, D. J., S. Heckman, S. J. Goodman, 2001:  A Diagnostic Analysis of the 
Kennedy Space Center LDAR Network, 1. Data Characteristics.  J. Geophys. Res., 
106, 4769 – 4786. 

——, K. L. Cummins, H. J. Christian, S. J. Goodman, 2000:  Combined Satellite- and 
Surface-Based Estimation of the Intracolud—Cloud-to-Ground Lightning Ratio over 
the Continental United States.  Mon. Wea. Rev., 129, 108 – 122. 

Department of the Air Force. Safety: General Industrial Operations.  Air Force 
Occupational Safety and Health Standard 91-66. Washington: HQ USAF, 1 October 
1997. 

——,Weather: Weather Station Opeartions. Air Force Manual 15-125. Washington: HQ 
USAF, 13 October 1998. 

Gremillion, M. S., R. E. Orville, 1999:  Thunderstorm Characteristics of Cloud-to-
Ground Lightning at the Kennedy Space Center, Florida: A Case Study of Lightning 
Initiation Signatures as Indicated by the WSR-88D.  Wea. Forecasting, 14, 640 – 649. 

Hoffert, S. G., M. L. Pearce, 1996:  The 29 July 1994 Merritt Island, FL Microburst: A 
Case Study Intercomparing Kennedy Space Center Three-Dimensional Lightning 
Data (LDAR) and WSR-88D Radar Data. Preprints, 18th Conf. on Severe Local 
Storms, February 19–23, San Francisco, CA, Amer. Meteor. Soc., 424 – 427. 

Lalande, P, A. Bondiou-Clergerie, P. Laroche, cited 1995: Studying Aircraft Lightning 
Strikes.  Aerospace Engineering Online. [Available on-line from 
http://www/sae.org/aeromag/aircraftlightning] 

Lennon, C., L. Maier, 1991:  Lightning Mapping System.  Proceedings, 1991 
International Aerospace and Ground Conf. on Lightning and Static Elec., Cocoa 
Beach, FL, NASA Conf. Pub 3106, 89-1 – 89-10. 

Lorenz, Howard. Project Engineer-Avionics, C-17 Systems Program Office, Wright-
Patterson AFB, OH. Personal Correspondence. 18 December 2001. 

Maier, L., C. Lennon, T. Britt, S. Schaefer, 1995: Lightning Detection and Ranging 
(LDAR) System Performane Analysis.  Proceedings, 6th Conference on Aviation 
Weather Systems, 305 – 309. 

72 



 

McIlveen, R., 1992:  Fundamentals of Weather and Climate. 1st ed. Chapman and Hall, 
497 pp. 

Murphy, M. J., K. L. Cummins, L. M. Maier, 2000:  The Analysis and Interpretation of 
Three-Dimensional Lightning Flash Information.  Proceedings, 80th American 
Meteorological Society Meeting, 4 pp. 

NASA Web Site, 2001:  Build_Flash_V6.c. Program Source Code. [Available on-line 
from http://trmm.ksc.nasa.gov/download/ldar] 

Rinehart, R. E., 1997:  Radar for Meteorologists. 3d ed. Rinehart Publishing, 428 pp. 

Rison, W., R. J. Thomas, P. R. Krehbiel, T. Hamlin, J. Harlin, 1999:  A GPS-based 
Three-Dimensional Lightning Mapping System: Initial Observations.  Geophys. Res. 
Lett., 26, 3573 – 3576. 

Rustan, P. L., M. A. Uman, D. G. Childers, W. H. Beasley, C. L. Lennon, 1980:  
Lightning Source Locations From VHF Radiation Data for a Flash at Kennedy Space 
Center.  J. Geophys. Res., 85 C-9, 4,893 – 4,903. 

Starr, S., D. Sharp, F. Merceret, J. Madura, M. Murphy, 1998:  LDAR, a Three-
Dimensional Lightning Warning System: Its Development and Use by the 
Government, and Transition to Public Availability.  KSC Tech Report KSC-00325, 8 
pp. 

Stolzenburg, M., W. D. Rust, T. C. Marshall,  1998:  Electrical Structure in 
Thunderstorm Convective Regions, 3. Synthesis.  J. Geophys. Res., 103 D-12, 14,097 
– 14,108. 

Uman, M. A., E. P. Krider, 1989:  Natural and Artificially Initiated Lightning, Science, 
246, 457 – 464. 

73 



 

Vita 

1Lt Lee Nelson was born (and will die) a Minnesota Vikings fan.  Born and raised in 

the Land of 10,000 Lakes, he is rumored to actually bleed purple.  He graduated from 

Barrett Public High School in Barrett, Minnesota.  After attending the University of 

Minnesota at Morris for two quarters, he enlisted in the U. S. Air Force and was trained 

as a Target Intelligence Specialist.  He continued his education at night over the next 

several years and eventually entered the Palace Chase program and moved back to 

Minnesota.  There he attended North Dakota State University for a year and served in the 

North Dakota Air National Guard before returning to active duty (again as a Target 

Intelligence Specialist).  In 1995, he applied for, and was accepted into, the Airman 

Education and Commissioning Program and moved to Greeley, Colorado to attend the 

University of Northern Colorado.  In December 1997 he graduated Summa Cum Laude 

with a Bachelor of Arts degree in Earth Sciences-Emphasis in Meteorology, from the 

University of Northern Colorado. 

1Lt Nelson was commissioned a 2nd Lieutenant in the Air Force on 24 April 1998 as a 

weather officer.  His first assignment was to the 18th Weather Squadron at Fort Bragg, 

North Carolina where he was the XVIII Airborne Corps Assistant Staff Weather Officer. 

His next assignment was to Wright-Patterson AFB, Ohio to attend the Air Force 

Institute of Technology to enter the graduate meteorology program.  After graduation he 

is being assigned to the 607th Weather Squadron at Seoul, South Korea. 

In addition to being a die-hard Vikings fan, he enjoys playing guitar and is an avid 

golfer.  One of his favorite hobbies is building custom golf clubs.

74 



 

 

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1.  REPORT DATE (DD-MM-YYYY)
26-03-2002

2.  REPORT TYPE 
Master's Thesis

4.  TITLE AND SUBTITLE
SYNTHESIS OF 3-DIMENSIONAL LIGHTNING DATA AND WEATHER
RADAR DATA TO DETERMINE THE DISTANCE THAT NATURALLY
OCCURRING LIGHTNING TRAVELS FROM THUNDERSTORMS

5a.  CONTRACT NUMBER

6.  AUTHOR(S)
Nelson, Lee, A., First Lieutenant, USAF

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering Management (AFIT/EN)
2950 P Street, Building 640
WPAFB OH 45433-7765

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
ASC/YCA 
Attn: Lt Col Robert S. Baerst 
2590 Loop Rd West 
WPAFB, OH 45433                            DSN: 986-9419

8. PERFORMING ORGANIZATION
    REPORT NUMBER

AFIT/GM/ENP/02M-07

10. SPONSOR/MONITOR'S ACRONYM(S)

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

14. ABSTRACT
The goal of this research was to examine the possibility of establishing guidance for lightning avoidance and lightning warning
criteria based upon lightning radar reflectivity signatures. Determining how far naturally occurring lightning normally travels from
thunderstorms can provide insight to decision makers concerning in-flight and ground safety measures.  3D lightning data are
merged with archived weather radar data.  To analyze the radar characteristics of the lightning data, radar data are interpolated to a
3D grid of reflectivity.  Lightning flashes were analyzed to resolve the reflectivity of the flash origin and to determine the distance
of the flash origin from the nearest radar reflectivity core--defined as a radar reflectivity factor (dBZ) of greater than 40-dBZ.  95%
of the flash origins were located within 3 km of the nearest 40-dBZ composite reflectivity echo, while 95% of the flash origins
were within 6 km of the nearest 40-dBZ base reflectivity echo.  99% of the flashes traveled less than 30 km from the flash origin,
and less than 21 km from the nearest 40-dBZ echo.  The results indicate that it should be feasible to suggest lightning avoidance
criteria based upon the radar reflectivity from ground or airborne radars.

15. SUBJECT TERMS
Lightning, Radar, Lightning Detection and Ranging, LDAR, Thunderstorm, Meteorology

18. NUMBER
      OF 
      PAGES

85

19a. NAME OF RESPONSIBLE PERSON 
Maj. Gary R. Huffines, ENP  a.  REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
      ABSTRACT

UU

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR  FORM TO THE ABOVE ADDRESS.  

3.  DATES COVERED (From - To)
Jun 2001 - Mar 2002

5b.  GRANT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S)

16. SECURITY CLASSIFICATION OF:

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636 ext. 4511

 


	DEPARTMENT OF THE AIR FORCE
	AIR UNIVERSITY
	Acknowledgements
	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation
	Problem and Importance
	Purpose and Scope of Work
	Summary of Results
	Thesis Organization

	Background
	Thunderstorm Electrical Structure
	The Lightning Discharge Process
	CG Lightning.  Most of the research accomplished to date has focused
	Cloud Discharges.  Until recently, there was no reliable way to

	Lightning Detection and Ranging (LDAR)
	Data Flow in LDAR System.  The RF energy that the system detects is in
	Accuracy of LDAR Data.  The accuracy of LDAR data is a function of

	Radar Coverage of the Kennedy Space Center Area

	Research Methodology
	LDAR Data Point Flash Grouping
	Case Study Selection
	Synoptic Cases.  The term synoptic in this context is used to describe
	Airmass Cases.  There were many more LDAR data files that indicated

	Radar Data Processing
	Translation to 3D Grid.  The Sorted Position Radar Interpolation
	Efficiency and Radar Processing Issues.  In order to process the

	Merging LDAR and Radar Data
	Determining Reflectivity.  To determine the radar reflectivity for the
	Determining Distances from Radar Echoes.  The radar display on the


	Results and Analysis
	Flash Origin Radar Characteristics
	Composite Reflectivity.  Gremillion and Orville (1999), and Hoffert and
	Base Reflectivity.  As detailed in the previous chapter, the dataset for the

	Overall Flash Distances
	Distance from Flash Origin.  For the basic investigation into how far
	Distance from 40-dBZ Line.  As mentioned earlier, a subjective analysis

	Regime Analysis
	Flash Origin Characteristics.  The mean value of flash origin base
	Flash Distances.  A significant difference exists in the distribution of


	Conclusion
	Conclusions
	Recommendations for Future Work


	Appendix A.  IDL Flash Grouping Program
	
	
	
	
	FUNCTION Const
	FUNCTION is_point_in_flash_bounds, p1, data, p, fnum, origin, C
	FUNCTION is_point_in_branch_bounds, p1, bn, data, b, origin
	FUNCTION find_closest_point_in_flash, d1, pt1, p, data





	Appendix B.  Examples of Radar Processing Errors
	Bibliography
	Vita

